
Journal of Geometry and Physics 58 (2008) 179–207
www.elsevier.com/locate/jgp

Unique continuation results for Ricci curvature and applications

Michael T. Andersona,∗, Marc Herzlichb

a Department of Mathematics, S.U.N.Y. at Stony Brook, Stony Brook, NY 11794-3651, USA
b Institut de mathématiques et de modélisation de Montpellier, CNRS et Université Montpellier II, 34095 Montpellier Cedex 5, France

Received 6 October 2007; accepted 23 October 2007
Available online 1 November 2007

Abstract

Unique continuation results are proved for metrics with prescribed Ricci curvature in the setting of bounded metrics on compact
manifolds with boundary, and in the setting of complete conformally compact metrics on such manifolds. Related to this issue, an
isometry extension property is proved: continuous groups of isometries at conformal infinity extend into the bulk of any complete
conformally compact Einstein metric. Relations of this property with the invariance of the Gauss–Codazzi constraint equations
under deformations are also discussed.
c© 2007 Elsevier B.V. All rights reserved.

MSC: 58J32; 58J60; 53C21

Keywords: Einstein metrics; Unique continuation

1. Introduction

In this paper, we study certain issues related to the boundary behavior of metrics with prescribed Ricci curvature.
Let M be a compact (n + 1)-dimensional manifold with compact non-empty boundary ∂M . We consider two possible
classes of Riemannian metrics g on M . First, g may extend smoothly to a Riemannian metric on the closure
M̄ = M ∪ ∂M , thus inducing a Riemannian metric γ = g|∂M on ∂M . Second, g may be a complete metric on
M , so that ∂M is “at infinity”. In this case, we assume that g is conformally compact, i.e. there exists a defining
function ρ for ∂M in M such that the conformally equivalent metric

g̃ = ρ2g (1.1)

extends at least C2 to ∂M . The defining function ρ is unique only up to multiplication by positive functions; hence
only the conformal class [γ ] of the associated boundary metric γ = ḡ|∂M is determined by (M, g).

The issue of boundary regularity of Riemannian metrics g with controlled Ricci curvature has been addressed
recently in several papers. Thus, [4] proves boundary regularity for bounded metrics g on M with controlled Ricci
curvature, assuming control on the boundary metric γ and the mean curvature of ∂M in M . In [16], boundary regularity
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is proved for conformally compact Einstein metrics with smooth conformal infinity; this was previously proved by
different methods in dimension 4 in [3], cf. also [5].

One purpose of this paper is to prove a unique continuation property at the boundary ∂M for bounded metrics or
for conformally compact metrics. We first state a version of the result for Einstein metrics on bounded domains.

Theorem 1.1. Let (M, g) be a C3,α metric on a compact manifold with boundary M, with induced metric γ = g|∂M ,
and let A be the 2nd fundamental form of ∂M in M. Suppose the Ricci curvature Ricg satisfies

Ricg = λg, (1.2)

where λ is a fixed constant.
Then (M, g) is uniquely determined up to local isometry and inclusion, by the Cauchy data (γ, A) on an arbitrary

open set U of ∂M.

Thus, if (M1, g1) and (M2, g2) are a pair of Einstein metrics as above, whose Cauchy data (γ, A) agree on an
open set U common to both ∂M1 and ∂M2, then after passing to suitable covering spaces M̄i , either there exist
isometric embeddings M̄1 ⊂ M̄2 or M̄2 ⊂ M̄1 or there exists an Einstein metric (M̄3, g3) and isometric embeddings
(M̄i , gi ) ⊂ (M̄3, g3). Similar results hold for metrics which satisfy other covariant equations involving the metric to
second order, for example the Einstein equations coupled to other fields; see Proposition 3.7.

For conformally compact metrics, the second fundamental form A of the compactified metric ḡ in (1.1) is umbilic,
and completely determined by the defining function ρ. In fact, for conformally compact Einstein metrics, the higher
order Lie derivatives L(k)N ḡ at ∂M , where N is the unit vector in the direction ∇̄ρ, are determined by the conformal
infinity [γ ] and ρ up to order k < n. Supposing ρ is a geodesic defining function, so that ‖∇̄ρ‖ = 1, let

g(n) =
1
n!
L(n)N ḡ. (1.3)

More precisely, g(n) is the nth term in the Fefferman–Graham expansion of the metric g; this is given by (1.3) when
n is odd, and in a similar way when n is even, cf. [18] and Section 4. The term g(n) is the natural analog of A for
conformally compact Einstein metrics.

Theorem 1.2. Let g be a C2 conformally compact Einstein metric on a compact manifold M with C∞ smooth
conformal infinity [γ ], normalized so that

Ricg = −ng. (1.4)

Then the Cauchy data (γ, g(n)) restricted to any open set U of ∂M uniquely determine (M, g) up to local isometry
and determine (γ, g(n)) globally on ∂M.

The recent boundary regularity result of Chruściel et al. [16], implies that (M, g) is C∞ polyhomogeneous
conformally compact, so that the hypotheses of Theorem 1.2 imply the term g(n) is well defined on ∂M . A more
general version of Theorem 1.2, without the smoothness assumption on [γ ], is proved in Section 4, cf. Theorem 4.1.
For conformally compact metrics coupled to other fields, see Remark 4.5.

Of course neither Theorem 1.1 or 1.2 hold when just the boundary metric γ on U ⊂ ∂M is fixed. For example, in
the context of Theorem 1.2, by [20,16], given any C∞ smooth boundary metric γ sufficiently close to the round metric
on Sn , there is a smooth (in the polyhomogeneous sense) conformally compact Einstein metric on the (n + 1)-ball
Bn+1, close to the Poincaré metric. Hence, the behavior of γ in U is independent of its behavior on the complement
of U in ∂M .

Theorems 1.1 and 1.2 have been phrased in the context of “global” Einstein metrics, defined on compact manifolds
with compact boundary. However, the proofs are local, and these results hold for metrics defined on an open manifold
with boundary. From this perspective, the data (γ, A) or (γ, g(n)) on U determine whether Einstein metric g has
a global extension to an Einstein metric on a compact manifold with boundary (or conformally compact Einstein
metric), and how smooth that extension is at the global boundary.

A second purpose of the paper is to prove the following isometry extension result which is at least conceptually
closely related to Theorem 1.2. However, while Theorem 1.2 is valid locally, this result depends crucially on global
properties.
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Theorem 1.3. Let g be a C2 conformally compact Einstein metric on a compact manifold M with C∞ boundary
metric (∂M, γ ), and suppose

π1(M, ∂M) = 0. (1.5)

Then any connected group of isometries of (∂M, γ ) extends to an action by isometries on (M, g).

The condition (1.5) is equivalent to the statement that ∂M is connected and the inclusion map ι : ∂M → M induces
a surjection π1(∂M) → π1(M) → 0.

Rather surprisingly, this result is closely related to the equations at conformal infinity induced by the
Gauss–Codazzi equations on hypersurfaces tending to ∂M . It turns out that isometry extension from the boundary
at least into a thickening of the boundary is equivalent to the requirement that the Gauss–Codazzi equations induced
at ∂M are preserved under arbitrary deformations of the boundary metric. This is discussed in detail in Section 5, see
e.g. Proposition 5.4. We note that this result does not hold for complete, asymptotically (locally) flat Einstein metrics,
cf. Remark 5.8.

A simple consequence of Theorem 1.3 is the following uniqueness result:

Corollary 1.4. A C2 conformally compact Einstein metric with conformal infinity given by the class of the round
metric g+1 on the sphere Sn is necessarily isometric to the Poincaré metric on the ball Bn+1.

Results similar to Theorem 1.3 and Corollary 1.4 have previously been proved in a number of different special
cases by several authors, see for example [7,9,31,33]; the proofs in all these cases are very different from the proof
given here.

It is well known that unique continuation does not hold for large classes of elliptic systems of PDEs, even for
general small perturbations of systems which are diagonal at leading order; see for instance [23] and references therein
for a discussion related to geometric PDEs. The proofs of Theorems 1.1 and 1.2 rely on unique continuation results
of Calderón [13,14] and Mazzeo [27] respectively, based on Carleman estimates. The main difficulty in reducing the
proofs to these results is the diffeomorphism covariance of the Einstein equations and, more importantly, that of the
“abstract” Cauchy data (γ, A) or (γ, g(n)) at ∂M . The unique continuation theorem of Mazzeo requires a diagonal (i.e.
uncoupled) Laplace-type system of equations, at leading (second) order. The unique continuation result of Calderón
is more general, but again requires strong restrictions on the structure of the leading order symbol of the operator. For
emphasis and clarity, these issues are discussed in more detail in Section 2. The proofs of Theorems 1.1–1.3 are then
given in Sections 3–5 respectively.

Very recently, while the writing on this paper was being completed, Biquard [12] has given a different proof of
Theorem 1.2, which avoids some of the gauge issues discussed above. However, his method apparently requires C∞

smoothness of the boundary data, which limits the applicability of this result; for instance the applications in [5] or [6]
require finite or low differentiability of the boundary data.

We would like to thank Michael Taylor for interesting discussions on geodesic–harmonic coordinates, Piotr
Chruściel and Erwann Delay for interesting discussions concerning Theorem 1.3, and Olivier Biquard for informing
us of his independent work on unique continuation.

2. Local coordinates and Cauchy data

In this section, we discuss in more detail the remarks in the Introduction on classes of local coordinate systems,
and their relation with Cauchy data on the boundary ∂M .

Thus, consider for example solutions to the system

Ricg = 0, (2.1)

defined near the boundary ∂M of an (n + 1)-dimensional manifold M . Since the Ricci curvature involves two
derivatives of the metric, Cauchy data at ∂M consist of the boundary metric γ and its first derivative, invariantly
represented by the second fundamental form A of ∂M in M . Thus, we assume (γ, A) are prescribed at ∂M (subject
to the Gauss and Gauss–Codazzi equations), and call (γ, A) abstract Cauchy data. Observe that the abstract Cauchy
data are invariant under diffeomorphisms of M equal to the identity at ∂M .
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The metric g determines the geodesic defining function

t (x) = distg(x, ∂M).

The function t depends of course on g; however, given any other smooth metric g′, there is a diffeomorphism F of a
neighborhood of ∂M , equal to the identity on ∂M , such that t ′(x) = distF∗g′(x, ∂M) satisfies t ′ = t . As noted above,
this normalization does not change the abstract Cauchy data (γ, A) and preserves the isometry class of the metric.

Let {yα}, 0 ≤ α ≤ n, be any local coordinates on a domain Ω in M containing a domain U in ∂M . We assume that
{yi

} for 1 ≤ i ≤ n form local coordinates for ∂M when y0
= 0, so that ∂/∂y0 is transverse to ∂M . Throughout the

paper, Greek indices α, β run from 0 to n, while Latin indices i , j run from 1 to n. If gαβ are the components of g in
these coordinates, then the abstract Cauchy problem associated to (2.1) in the local coordinates {yα} is the system

(Ricg)αβ = 0, with gi j |U = γi j ,
1
2
(L∇t g)i j |U = ai j , (2.2)

where γi j and ai j are given on U (subject to the constraints of the Gauss and Gauss–Codazzi equations). Here one
immediately sees a problem, in that (2.2) on U ⊂ ∂M involves only the tangential part gi j of the metric (at 0 order),
and not the full metric gαβ at U . The normal g00 and mixed g0i components of the metric are not prescribed at
U . As seen below, these components are gauge dependent; they cannot be prescribed “abstractly”, independent of
coordinates, as is the case with γ and A. In other words, if (2.1) is expressed in local coordinates {yα} as above, then
a well-defined Cauchy or unique continuation problem has the form

(Ricg)αβ = 0, with gαβ = γαβ ,
1
2
∂t gαβ = aαβ , on U ⊂ ∂M, (2.3)

where Ω is an open set in (Rn+1)+ with ∂Ω = U an open set in ∂(Rn+1)+ = Rn . Formally, (2.3) is a determined
system, while (2.2) is underdetermined.

Let g0 and g1 be two solutions to (2.1), with the same Cauchy data (γ, A), and with geodesic defining functions t0,
t1. Changing the metric g1 by a diffeomorphism if necessary, one may assume that t0 = t1. One may then write the
metrics with respect to a Gaussian or geodesic boundary coordinate system (t, yi ) as

gk = dt2
+ (gk)t , (2.4)

where (gk)t is a curve of metrics on ∂M and k = 0, 1. Here yi are coordinates on ∂M which are extended into M to
be invariant under the flow of the vector field ∇t . The metric (gk)t is the metric induced on S(t) and pulled back to
∂M by the flow of ∇t . One has (gk)0 = γ and 1

2
d
dt (gk)t |t=0 = A. Since g0α = δ0α in these coordinates, ∇t = ∂t , and

hence the local coordinates are the same for both metrics (or at least may be chosen to be the same). Thus, geodesic
boundary coordinates are natural from the point of view of the Cauchy or unique continuation problem, since in
such local coordinates the system (2.2), together with the prescription g0α = δ0α , is equivalent to the system (2.3).
However, the Ricci curvature is not elliptic or diagonal to leading order in these coordinates. The expression of the
Ricci curvature in such coordinates does not satisfy the hypotheses of Calderón’s theorem [14], and it appears to be
difficult to establish unique continuation of solutions in these coordinates by working directly on the equations on the
metric (see, however, [12] for another approach).

Next suppose that {xα} are boundary harmonic coordinates, defined as follows. For 1 ≤ i ≤ n, let x̂ i be local
harmonic coordinates on a domain U in (∂M, γ ). Extend x̂ i into M to be harmonic functions in (Ω , g), Ω ⊂ M , with
Dirichlet boundary data; thus

1gx i
= 0, x i

|U = x̂ i . (2.5)

Let x0 be a harmonic function on Ω with 0 boundary data, so that

1gx0
= 0, x0

|U = 0. (2.6)

Then the collection {xα}, 0 ≤ α ≤ n, form a local harmonic coordinate chart on a domain Ω ⊂ (M, g). In such
coordinates, one has

(Ricg)αβ = −
1
2

gµν∂µ∂νgαβ + Qαβ(g, ∂g), (2.7)
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where Q(g, ∂g) depends only on g and its first derivatives. This is an elliptic operator, diagonal at leading order,
and satisfies the hypotheses of Calderón’s theorem. However, in general, the local Cauchy problem (2.3) is not well
defined in these coordinates; if g0 and g1 are two solutions of (2.1), each with corresponding local boundary harmonic
coordinates, then the components (g0)0α and (g1)0α in general will differ at U ⊂ ∂M . This is of course closely related
to the fact that there are many possible choices of harmonic functions xα satisfying (2.5) and (2.6), and to the fact that
the behavior of harmonic functions depends on global properties of (Ω , g). In any case, it is not known how to set up
a well-defined Cauchy problem in these coordinates for which one can apply standard unique continuation results.

Consider then geodesic–harmonic coordinates “intermediate” between geodesic boundary and boundary harmonic
coordinates. Thus, let t be the geodesic distance to ∂M as above. Choose local harmonic coordinates x̂ i on ∂M as
before and extend them into M to be harmonic on the level sets S(t) of t , i.e. locally on S(t),

1U (t)x
i
= 0, x i

|∂U (t) = x̂ i
|∂U (t); (2.8)

here the boundary value x̂ i is the extension of x̂ i on U into M which is invariant under the flow φt of ∇t , and
U (t) = φt (U ) ⊂ S(t). The functions (t, x i ) form a coordinate system in a neighborhood Ω in M with Ω ∩ ∂M = U .

It is not difficult to prove that geodesic–harmonic coordinates preserve the Cauchy data, in the sense that the data
(2.2) in such coordinates imply the data (2.3). However, the Ricci curvature is not an elliptic operator in the metric in
these coordinates, nor is it diagonal at leading order; the main reason is that the mean curvature of the level sets S(t)
is not a priori controlled. So again, it remains an open question whether unique continuation can be proved in these
coordinates.

Having listed these attempts which appear to fail, a natural choice of coordinates which do satisfy the necessary
requirements are H -harmonic coordinates (τ, x i ), whose τ -level surfaces Sτ are of prescribed mean curvature H and
with x i harmonic on Sτ . These coordinates were introduced by Andersson–Moncrief [8] to prove a well-posedness
result for the Cauchy problem for the Einstein equations in general relativity, and, as shown in [8], have a number of
advantageous properties. Thus, adapting some of the arguments of [8], we show in Section 3 that the Einstein equations
(1.2) are effectively elliptic in such coordinates, and such coordinates preserve the Cauchy data in the sense above
(i.e. (2.2) implies (2.3)). It will then be shown that unique continuation holds in such coordinates, via application of
the Calderón theorem.

3. Proof of Theorem 1.1

Theorem 1.1 follows from a purely local result, which we formulate as follows. Let C be a domain diffeomorphic
to a cylinder I × Bn

⊂ Rn+1, with U = {0} × Bn , diffeomorphic to a ball in Rn . Let U = ∂0C be the horizontal
boundary and ∂C = I × Sn−1 be the vertical boundary.

Let g be a Riemannian metric on C which is Ck−1,α up to the boundary of C in the given standard coordinate
system {yα} = {y0, yi

} with y0
= 0 on U and k ≥ 2. Without loss of generality, we assume that C is chosen

sufficiently small so that g is close to the Euclidean metric δ in the Ck−1,α topology. For simplicity, we shall rescale C
and the coordinates {yα} if necessary so that (C, g) is Ck−1,α close to the standard cylinder ((I × Bn(1), Bn(1))) ⊂

(Rn+1,Rn), I = [0, 1].
We will prove the following local version of Theorem 1.1.

Theorem 3.1. Let g0, g1 be two Ck−1,α metrics as above on C, k ≥ 4, satisfying

Ricgi = λgi , i = 0, 1 (3.1)

for some fixed constant λ. Suppose g0 and g1 have the same abstract Cauchy data on U in the sense of Section 2, so
that γ0 = γ1 and A0 = A1.

Then (C, g0) is isometric to (C, g1), by an isometry equal to the identity on U. In particular, Theorem 1.1 holds.

The proof of Theorem 3.1 will proceed in several steps, organized around several lemmas. We first work with a
fixed metric g on C as above. Let N be the inward unit normal to U in C and let A = ∇N be the corresponding
second fundamental form, with mean curvature H = trg A on U . By the initial assumptions above, A and H are close
to 0 in Ck−2,α; more precisely, one may assume that

‖A‖Ck−2,α = O(ε)
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with ε positive but as small as needed, by a further rescaling of the coordinates (this will play an important role at
various places below). Note moreover that the rescaling process turns the Einstein constant λ into ελ. Abusing notation
here, we denote y0

= t and without loss of generality assume that the coordinates yi are harmonic on U .
To begin, we construct certain systems of H -harmonic coordinates discussed at the end of Section 2. Let

φ : C → C be a diffeomorphism of the cylinder C (in other words a change of coordinates), so that yα = φα(xβ),
where xβ is another coordinate system for C . As above, we write xα = (τ, x i ) and assume that φ is close to the
identity map. The level surfaces Sτ = {τ } × Bn are mapped under φ to a foliation Στ of C , with each leaf given by
the graph of the function φτ over Bn . We assume φ0 = id , so that φ = id on U . Let f : ∂C → ∂C be the induced
diffeomorphism on the boundary ∂C .

Lemma 3.2. Let k ≥ 2. Given a Ck,α mapping f on ∂C as above, close to the identity in Ck,α , and a metric g close
to the Euclidean metric δ in Ck−1,α on C, there exists a unique φ ∈ Diff k,α(C) such that, with respect to the pull-back
metric φ∗(g),

Hφ∗(g)(Sτ ) = Hφ∗(g)(S0), and 1
φ∗(g)
Sτ

x i
= 0, (3.2)

with the property that φ|∂C = f . Thus, the leaves τ = const have mean curvature independent of τ , in the xα-
coordinates, and the coordinate functions x i are harmonic on each Sτ .

Proof. Let

H : Metk−1,α(C)× Diff k,α
0 (C) −→ Ck−2,α(C)×

n∏
1

Ck−2,α(C)× Diff k,α
0 (∂C)

H(g, F) = (H F∗(g)(Sτ )− H F∗(g)(S0),1
F∗(g)
Sτ

x i , F|∂C ),

where Diffk,α
0 (C) is the space of Ck,α diffeomorphisms on the cylinder equal to the identity on C0 = {0} × Bn . The

map H is clearly a smooth map of Banach spaces, and its linearization at (δ, id) in the second variable is

L(v) = (1δv
0,1δv

i , v|∂C ),

where 1δ is the Laplacian with respect to the flat metric δ on Sτ . The operator L is clearly an isomorphism, and by
the implicit function theorem in Banach spaces, it follows that there is a smooth map

Φ : U × V ⊂ Metk−1,α(C)× Diff k,α
0 (∂C) −→ Diff k,α

0 (C),

Φ(g, f ) = φg( f )

from a neighborhood of the Euclidean metric and the identity map such that (φg( f ))|∂C = f , and satisfying (3.2).
Note moreover that φg( f ) is Ck,α-close to the identity if f is close to it on ∂C and g is Ck−1,α-close to the

Euclidean metric on C . This implies that the family {Στ } forms a Ck,α foliation of C . �

The metric g in the xα = (τ, x i ) coordinates, i.e. φ∗g, may be written in lapse/shift form, commonly used in
general relativity, as

g = u2dτ 2
+ gi j (dx i

+ σ i dτ)(dx j
+ σ j dτ), (3.3)

where u is the lapse and σ is the shift in the x-coordinates and gi j is the induced metric on the leaves Sτ = {τ = const}.
A simple computation shows that lapse and shift are related to the metric g = gy

αβdyαdyβ in the initial (yα)
coordinates by the equations

u2
+ |σ |

2
= gy

αβ(∂τφ
α)(∂τφ

β), (3.4)

gi jσ
j
= gy

αβ(∂τφ
α)(∂iφ

β), (3.5)

gi j = gy
αβ(∂iφ

α)(∂ jφ
β). (3.6)

A computation using (3.5) shows that |σ |
2

= gi j gy
αβgy

µν∂τφ
α∂τφ

µ∂iφ
β∂ jφ

ν . From g0 j = gi jσ
i and g00 = u2

+|σ |
2,

one may compute gαβ and, expanding, this yields g00
= u−2 and σ i

= −u2g0i . The unit normal N to the foliation
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Στ is given by

N = u−1(∂τ − σ), (3.7)

so that, for instance, g(N , ·) = udτ (this will be useful later on).
It is now important to notice that the construction of H -harmonic coordinates in Lemma 3.2 can be done for

any choice of boundary diffeomorphism f . We shall show that there is a (unique) choice of f close to the identity
with f = id on ∂0C = {0} × Sn−1, such that u is identically 1 and the shift σ vanishes on the vertical boundary
∂C = I × Sn−1.

Lemma 3.3. For any k ≥ 3, there exists a Ck,α diffeomorphism f : ∂C → ∂C such that the lapse u and shift σ of g
in (3.3) satisfies

u = 1, and σ = 0, on ∂C. (3.8)

Proof. Consider the operator

Ξ : Metk−1,α(C)× Diffk,α
0 (∂C) → Ck−1,α(∂C)×

n∏
1

Ck−1,α(∂C), (3.9)

Ξ (g, f ) = (gy
αβ(∂τφ

α)(∂τφ
β)− |σ |

2(φ), σ i (φ)),

where φ = φg( f ) is defined above in the proof of Lemma 3.2; recall that φ|∂C = f . More precisely, Ξ is defined in
the neighborhoods U and V defined in Lemma 3.2. From (3.5), one has σ i

= gi j gy
αβ∂τφ

α∂ jφ
β . Note that for the map

f = id on ∂C , and at the metric g0 = δ, one has φg0(id) = id and |ξ |2(id) = 0, so that Ξ (g0, id) = (1, 0, 0). Thus,

Ξ (g, id) = (1 + O(ε), O(ε)), (3.10)

where, as already discussed, ε is positive and may be taken as small as needed. We would like to apply the implicit
function theorem to assert that for any g ∈ U , where U is sufficiently small, there exists f = f (g) ∈ V , such that

Ξ (g, f (g)) = (1, 0). (3.11)

If such f exists, then, for any g ∈ U , the pair (g, f ) defines a Ck,α diffeomorphism φ : C → C and the resulting
metric φ∗g satisfies (3.8). Thus it suffices to solve (3.11).

There is however a loss of one derivative in the map Ξ and its derivative in the second variable, as is obvious by
looking at its value at the metric g0 = δ:

(D2Ξ )(g0,id)(h) = (2∂τh0, ∂τhi
+ ∂i h

0). (3.12)

Thus, we need to use the Nash–Moser inverse function theorem. We use this in the form given in [34, Section
6.3], and in particular [34, Thm. 6.3.3, Cor. 1, Cor. 2]. Following Zehnder’s notation (with s in place of σ ), let
Xs = Metk−1,α(C), Ys = Diff k,α

0 (∂C), and Zs = Ck−1,α(∂C)×
∏n

1 Ck−1,α(∂C), so that s is a linear function of k+α.
Thus we write Xs = Mets+1+ε(C), for some arbitrary but fixed ε > 0 (recall we start at k ≥ 2), Ys = Diff s+2+ε

0 (∂C)
and Zs =

∏n
1 Cs+1+ε(∂C). We check the hypotheses of Zehnder’s theorem:

(H1) When s = 0, Ξ is C2 in f , with uniform bounds in Y0. This is clearly true.
(H2) Ξ is Lipschitz in X0, also true.
(H3) Ξ is of order s = ∞, with growth δ = 1. This follows from

‖Ξ (g, f )‖Ck−2,α ≤ C(k)(‖g‖Ck−1,α + ‖ f ‖Ck,α ).

(H4) Existence of right inverse of loss γ = 1. Let (D2Ξ )(g, f ) be the derivative of Ξ with respect to the second
variable f at (g, f ). Then varying f in the direction v, fs = f +sv, it is easy to see that the operator (D2Ξ )(g, f )
is a first-order linear PDE in v, with all coefficients in Ck−1,α . As in (3.12), the boundary Sn−1

= {τ = 0} is
non-characteristic. Hence, for any h ∈ Ck−1,α , there exists a unique Ck−1,α smooth solution v to

D2Ξ(g, f )(v) = h
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with initial value v0 = 0 on Sn−1. This gives the existence of an inverse operator L(g, f ) to D2Ξ(g, f ), with a loss
of 1-derivative. One has L : Zs → Ys−1 with D2Ξ(g, f ) ◦ L = id. The remaining conditions of (H4) are easily
checked to hold. It follows then from [34, Cor. 2, p. 241] that for any g close to g0 in X2+ε there exists f ∈ Y1
(depending continuously on g), which satisfies (3.11) (and similarly for higher s).

This shows that, for any g ∈ Metk,α(C) close to g0, with k ≥ 3, there exists f ∈ Ck,α′

(∂C), which solves (3.11).
Pulling back as above gives, for any initial g ∈ Ck,α , a Ck−1,α′

metric φ∗g in H -harmonic coordinates and satisfying
(3.8). �

For the remainder of the proof, we work in the fixed H -harmonic coordinate system satisfying (3.8). Next, we
derive the form of the Einstein equations for the metric g in (3.3). First, the second fundamental form A =

1
2LN gSτ

of the leaves Sτ has the form

A =
1
2

u−1(L∂τ gS − Lσ gS), (3.13)

where we have denoted by gS the restriction of g on Sτ . More precisely, and since we shall compute on the (n + 1)-
dimensional manifold with tensors living on the n-dimensional slices Sτ ,

gS = g(ΠS ·,ΠS ·),

where ΠS is the orthogonal projection operator on Sτ . Thus, gS = gi j (dx i
+ σ i dτ)(dx j

+ σ j dτ), as in (3.3). Clearly
(3.13) is the same as

L∂τ gS = 2u A + Lσ gS . (3.14)

A straightforward computation from commuting derivatives gives the Riccati equation

(LN A) = A2
− u−1(D2u)− RN , (3.15)

where RN = gS(R(·, N )N , ·)|T S⊗T S and A2 is the bilinear form associated through gS to the square of the shape
operator of Sτ . (The Eq. (3.15) may also be derived from the second variation formula). Using the fact that A is
tangential (i.e. A(N , ·) = 0), this gives

∂τ A = −Lσ A − D2u + u A2
− u RN . (3.16)

Another straightforward calculation via the Gauss equations shows that RN = Ricg − RicSτ +H A − A2, which, via
(3.14) and (3.16) gives the system of ‘evolution’ equations for gi j and A = Ai j on Sτ :

∂τ g = 2u A + Lσ gS, (3.17)

∂τ A = Lσ A − D2
Su + u

(
RicS − Ricg +2A2

− H A
)
. (3.18)

(Up to sign differences, these are the well-known Einstein evolution equations in general relativity, cf. [8,32].)
Substituting the expression of A given by (3.17) in (3.18) gives the second-order evolution equation for g:

(L∂τL∂τ + LσLσ − 2L∂τLσ )gS = udu(N )A − 2u D2
Su + 2u2

(
RicS − Ricg +2A2

− H A
)
. (3.19)

We now shift from these intrinsic equations to their expressions in coordinates. Any tangential 1-form on Sτ
necessarily is of the form

α = αi (dx i
+ σ i dτ),

thus it is enough to work with the (i, j) components only. Using (2.7) (along the slices Sτ ), one obtains

u21Sgi j +
(
(L∂τL∂τ + LσLσ − 2L∂τLσ )gS

)
i j = −2u2(Ricg)i j − 2u(D2

Su)i j + Qi j (g, ∂g), (3.20)

where Qi j is a term involving at most the first-order derivatives of gαβ in all xα directions. Now,

(L∂τ gS)i j = ∂τ gi j , (Lσ gS)i j = σ k∂k gi j + gk j∂iσ
k
+ gik∂ jσ

k,
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so that, for Einstein metrics,

(∂2
τ + u21− 2σ k∂k∂τ + σ kσ l∂2

kl)gi j = −2u(D2u)i j + Si j (g, ∂g)+ Qi j (g, ∂g), (3.21)

where Qi j has the same general form as before and Si j contains tangential first and second derivatives of σ .
The 0i and 00 components of the Ricci curvature in the bulk are given by the ‘constraint’ equations along each leaf

Sτ :

δ(A − Hg) = − Ricg(N , ·) = 0,

|A|
2
− H2

+ RSτ = Rg − 2 Ricg(N , N ) = (n − 1)λ.
(3.22)

Next, we derive the equations for the lapse u and shift σ along the leaves Sτ .

Lemma 3.4. The lapse u and shift σ satisfy the following equations:

1u + |A|
2u + λu = −uN (H) = −(∂τ − σ)H. (3.23)

1σ i
= −2u〈D2x i , A〉 − u〈dx i , dH〉 − 2

〈
dx i , A(∇u)−

1
2

Hdu

〉
. (3.24)

Proof. The lapse equation is derived by taking the trace of (3.15), and noting that

trLN A = N (H)+ 2|A|
2.

For the shift equation, since the functions x i are harmonic on Sτ , one has

1((x i )′)+ (1′)(x i ) = 0,

where ′ denotes the Lie derivative with respect to uN and the Laplacian is taken with respect to the induced metric on
the slices Sτ . Moreover (x i )′ = −σ i (see above), and from standard formulas, cf. [11, Ch. 1K] for example, one has

(1′)(x i ) = −2〈D2x i , δ∗uN 〉 + 2〈dx i , β(δ∗uN )〉,

where all the terms on the right are along Sτ and β is the Bianchi operator, β(k) = δk +
1
2 dtrk. Thus, δ∗(uN ) = u A,

and the shift components σ i satisfy

1σ i
= −2u〈D2x i , A〉 + 2u

〈
dx i , δA −

1
2

dH

〉
+ 2

〈
dx i , A(∇u)−

1
2

Hdu

〉
.

The relation (3.24) then follows from the constraint equation (3.22). �

Summarizing the work above, the Einstein equations in local H -harmonic coordinates imply the following system
on the data (gi j , u, σ ):

(∂2
τ + u21− 2σ k∂k∂τ + σ kσ l∂2

kl)gi j = −2u(D2u)i j + Si j (gαβ , ∂gαβ)+ Qi j (gαβ , ∂gαβ), (3.25)

1u + |A|
2u + λu = dH0(σ ). (3.26)

1σ i
= −2u〈D2x i , A〉 − u∂i H0 − 2

(
Ai

j∇
j u −

1
2

H0∇
i u

)
, (3.27)

where H0 denotes the mean curvature of the {τ = 0}-slice U .

Remark 3.5. The system (3.25)–(3.27) is essentially an elliptic system in (gi j , u, σ ), given that H = H0 is prescribed.
Thus, assuming u ∼ 1 and σ ∼ 0, the operator P = ∂2

τ +u21−2σ i∂i∂τ +σ kσ l∂2
kl is elliptic on C and acts diagonally

on {gi j }, as is the Laplace operator on the slices Sτ acting on (u, σ ). The system (3.25)–(3.27) is of course coupled,
but the couplings are all of lower order, i.e. first order, except for the term D2u in (3.25). However, this term can be
controlled or estimated by elliptic regularity applied to the lapse equation (3.26) (as discussed further below). Given
the above, it is not difficult to deduce that local H -harmonic coordinates have the optimal regularity property, i.e. if g
is in Cm,α(C) in some local coordinate system, then g is in Cm,α(C) in H -harmonic coordinates. Since this will not
actually be used here, we omit further details of the proof.
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Next we show that the lapse and shift, and their τ -derivatives, are determined by the tangential metric gS and its
τ -derivative.

Lemma 3.6. Suppose the metric g is close to the Euclidean metric in the C2,α topology. Then in local H-harmonic
coordinates (τ, x i ) as defined above, the lapse–shift components (u, σ i ) and their derivatives (∂τu, ∂τσ i ), are
uniquely determined either by the tangential metric gi j and 2nd fundamental form Ai j on each Sτ , or by the tangential
metric gi j and its time derivatives ∂τ gi j on each Sτ .

Proof. The system (3.26) and (3.27) is a coupled elliptic system in the pair (u, σ ) on Sτ , with boundary values on
∂Sτ given by

u|∂Sτ = 1, σ |∂Sτ = 0. (3.28)

In the x i coordinates, all the coefficients of (3.26) and (3.27) are bounded in Cα . Since the metric gi j is close to
the flat metric in the C2,α topology, it is standard that there is then a unique solution to the elliptic boundary value
problem (3.26)–(3.28), cf. [19]. The solution (u, σ ) is uniquely determined by the coefficients (gi j , Ai j ) and the terms
or coefficients containing derivatives of H and the x i . But these are also determined by (gi j , Ai j ). Combining the
facts above, it follows that (u, σ ) is uniquely determined by (gi j , Ai j ).

The second claim is obtained in the same manner: rewrite the equations by replacing all the occurrences of Ai j
by its expression in (3.13). The equations are then non-linear equations in (u, σ i ). Considering them as a non-linear
operator from C2,α to Cα depending also on the metric, a simple computation shows that the operator linearized at the
Euclidean metric is invertible. Invertibility of the non-linear operator then follows from the implicit function theorem.

Next we claim that ∂τ g0α is also determined by (gi j , Ai j ) along Sτ . To see this, first note that

LN g = LN gS + LN (g(N , ·))⊗ g(N , ·)+ g(N , ·)⊗ LN (g(N , ·)),

where LN gS = 2A, g(N , ·) = udτ and

LN (g(N , ·))(∂i ) = −g(N , [u−1(∂τ − σ, ∂i ]) = u−1du(∂i ), LN (g(N , ·)))(N ) = 0.

This shows that all components of LN g are determined by (gi j , Ai j ) (since u and σ are already so determined). Now
writeLN g(∂τ , ∂α) = N (g0α)+l0α . One has N (g0α) = u−1∂τ g0α−u−1∂σ g0α , and the second term is again determined
by (gi j , Ai j ). Calculating the term l0i above explicitly, one easily finds that it also depends only on (gi j , Ai j ), so that

∂τ g0i = φi ,

is determined by an explicit formula in gi j , Ai j , u, σ and their tangential derivatives, and so implicitly by gi j , Ai j .
Working now in the same way shows that the same is true for ∂τ g00. This completes the proof. �

Proof of Theorems 3.1 and 1.1. Suppose that g and g̃ are two Einstein metrics on C with identical (γ, A) on
∂0C = U . One may construct H -harmonic coordinates for each, and via a diffeomorphism identifying these
coordinates, assume that the resulting pair of metrics g and g̃ have fixed H -harmonic coordinates (τ, x i ), and both
metrics satisfy the system (3.25)–(3.27). Let

h = hi j = g̃i j − gi j . (3.29)

One then takes the difference of both Eqs. (3.25) and freezes the coefficients at g to obtain a linear equation in h. Thus,
for example,1g̃ g̃i j −1ggi j = 1g(hi j )− (gab

− g̃ab)∂a∂b g̃i j . The second term here is of zero order (rational), in the
difference h, with coefficients depending on two derivatives of g̃. Carrying out the same procedure on the remaining
terms in (3.25) gives the equation

(∂2
τ + u21− 2∂σ ∂τ + ∂2

σ )hi j = −2(̃u(D̃2ũ)i j − u(D2u)i j )+Qi j (hαβ , ∂µhαβ),

where we have denoted ∂σ = σ k∂k , ∂2
σ = σ kσ l∂kl , and Q is a term depending on two derivatives of the background

(g, g̃) and linear in its arguments, whose precise value may change from line to line. Similarly, D̃2ũ − D2u =

D2v + (D̃2
− D2)̃u, where v = ũ − u and the second term is of the form Q above. Hence,

(∂2
τ + u21− 2∂σ ∂τ + ∂2

σ )hi j = −2u(D2v)i j +Qi j (hαβ , ∂µhαβ). (3.30)

Note that since we have linearized, Q depends linearly on hαβ and ∂µhαβ , with non-linear coefficients depending on
g̃ and g.
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Next we use the lapse and shift equations (3.26) and (3.27) to estimate the differences v = ũ − u and χ = σ̃ − σ .
Thus, as before,1g̃ ũ −1gu = 1gv+ D2

h (̃u), where D2
h is a second-order differential operator on ũ with coefficients

depending on the difference h, to first order. The remaining terms in (3.26) and (3.27) can all be treated in the same
way, using (3.13) to replace occurrences of Ai j by derivatives in τ and σ . Taking the difference, it then follows from
(3.26) and (3.27) that1v + |A|

2v + λv = Q(hi j , ∂µhi j )

1χ i
+ 2v〈D2x i , A〉 + v∂i H0 + 2

(
Ai

j −
1
2

Hδi
j

)
g jk∂ku = Qi (hkl , ∂µhkl),

(3.31)

where the terms Q are linear in the arguments and their coefficients depend on one derivatives of g̃. Note also that the
zeroth- and first-order terms in (v, χ) are small if the metric is close to the Euclidean metric. Thus, the left-hand side
operators are invertible with v = 0 and χ = 0 on ∂Sτ , and elliptic regularity applied to the system (3.31) then gives

‖v‖L2,2
x

≤ C(g̃, g)‖hi j‖L1,2
(τ,x)
, (3.32)

and

‖χ‖L2,2
x

≤ C(g̃, g)‖hi j‖L1,2
(τ,x)
. (3.33)

It follows from (3.30), (3.32) and (3.33) that

‖P(hi j )‖L2
x

≤ C(g̃αβ , gαβ)‖hαβ‖L1,2
(τ,x)
, (3.34)

where P is given in Remark 3.5.
Now by applying Lemma 3.6 to (u, σ ) and (̃u, σ̃ ) and taking the difference as above, it follows that v and χ , as

well as ∂τv and ∂τχ are given by a linear expression in hi j and its first derivatives (in every direction). Hence, (3.34)
becomes

‖P(hi j )‖L2
x

≤ C(g̃, g)‖hi j‖L1,2
(τ,x)
. (3.35)

We are now in position to apply the Calderón unique continuation theorem [14]. Thus, the operator P is elliptic
and diagonal, and the Cauchy data for P vanish at U , i.e.

h = ∂τh = 0 at U. (3.36)

We claim that P satisfies the hypotheses of the Calderon unique continuation theorem [14]. Following [14],
decompose the symbol of P as

A2(τ, x, ξ) = (u2gklξkξl − 2σ kσ lξkξl)I,

A1(τ, x, ξ) = σ kξk I,
(3.37)

where I is the N × N identity matrix, N =
1
2 n(n+1), equal to the cardinality of {i j}. Setting |ξ |2 = 1, (3.37) becomes

A2(τ, x, ξ) = (u2
− 2σ kσ lξkξl)I,

A1(τ, x, ξ) = σ kξk I.

Now form the matrix

M =

(
0 −I
A2 A1

)
. (3.38)

The matrices A1 and A2 are diagonal, and it is then easy to see that M is diagonalizable, i.e. has a basis of eigenvectors
over C. This implies that M satisfies the hypotheses of [14, Thm. 11(iii)], cf. also [14, Thm. 4]. The bound (3.35) is
substituted in the basic Carleman estimate of [14, Thm. 6], cf. also [29, (6.1)], showing that hi j satisfies the unique
continuation property. It follows from (3.36) and the Calderón unique continuation theorem that

hi j = g̃i j − gi j = 0,

in an open neighborhood Ω ⊂ C .
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By Lemma 3.6 once again, this implies hαβ = 0, i.e.

g̃αβ = gαβ ,

in Ω , so that g̃ is isometric to g in Ω . By construction, the isometry from g̃ to g equals the identity on U . This
shows that the metric g is uniquely determined in Ω , up to isometry, by the abstract Cauchy data on U . Since Einstein
metrics are real–analytic in the interior in harmonic coordinates, a standard analytic continuation argument (cf. [25]
for instance), then implies that g is unique up to isometry everywhere in C . This completes the proof of Theorem 3.1.

In the context of Theorem 1.1, the same analytic continuation argument shows that a pair of Einstein metrics
(Mi , gi ), i = 0, 1, whose Cauchy data agree on a common open set U of ∂Mi are everywhere locally isometric,
i.e. they become isometric in suitable covering spaces, modulo restriction or extension of the domain, as discussed
following Theorem 1.1. This then also completes the proof of Theorem 1.1. �

As an illustration, suppose (M1, g1) and (M2, g2) are a pair of Einstein metrics on compact manifolds with
boundary and the Cauchy data for g1 and g2 agree on an open set U of the boundary. Suppose Mi are connected
and the topological condition (1.5) holds for each Mi . Then, modulo isometry, either M1 ⊂ M2, M2 ⊂ M1, or Mi are
subdomains in a larger Einstein manifold M3 = M1 ∪ M2.

We conclude this section with a discussion of generalizations of Theorem 1.1. First, one might consider the unique
continuation problem for

Ricg = T, (3.39)

where T is a fixed symmetric bilinear form on M , at least Cα up to M̄ . However, this problem is not natural, in that
is not covariant under changes by diffeomorphism. For metrics alone, the Einstein equation (1.2) is the only equation
covariant under diffeomorphisms which involves at most the second derivatives of the metric. Nevertheless, the proof
of Theorem 1.1 shows that if g̃ and g are two solutions of (3.39) which have common H -harmonic coordinates near
(a portion of) ∂M on which (γ, A) = (γ̃ , Ã), then g̃ is isometric to g near (a portion of) ∂M .

Instead, it is more natural to consider the Einstein equation coupled (covariantly) to other fields χ besides the
metric; such equations arise naturally in many areas of physics. For example, χ may be a function on M , i.e. a scalar
field, or χ may be a connection 1-form (gauge field) on a bundle over M . We assume that the field(s) χ arise via a
diffeomorphism-invariant Lagrangian L = L(g, χ), depending on χ and its first derivatives in local coordinates, and
that χ satisfies field equations, i.e. Euler–Lagrange equations, coupled to the metric. For example, for a free massive
scalar field, the equation is the eigenfunction equation

1gχ = µχ, (3.40)

while for a connection 1-form, the equations are the Yang–Mills equations (or Maxwell equations when the bundle is
a U (1) bundle):

dF = d∗F = 0, (3.41)

where F is the curvature of the connection χ . Associated to such fields is the stress-energy tensor T = Tµν ; this is
a symmetric bilinear form obtained by varying the Lagrangian for χ with respect to the metric, cf. [22] for example.
For the free massive scalar field χ above, one has

T = dχ · dχ −
1
2
(|dχ |

2
+ µχ2)g,

while for a connection 1-form

T = F · F −
1
4
|F |

2g,

where (F · F)ab = Fac Fbd gcd .
When the part of the Lagrangian involving the metric to second order only contains the scalar curvature, i.e. the

Einstein–Hilbert action, the resulting coupled Euler–Lagrange equations for the system (g, χ) are

Ricg −
R

2
g = T, Eg(χ) = 0. (3.42)
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By taking the trace, this can be rewritten as

Ricg = T̂ = T −
1

n − 1
trgT, Eg(χ) = 0. (3.43)

Here we assume Eg(χ) is a second-order elliptic system for χ , with coefficients depending on g, as in (3.40) or
(3.41) (the latter viewed as an equation for the connection). In case the field(s) χ have an internal symmetry group, as
in the case of gauge fields, this will require a particular choice of gauge for χ in which the Euler–Lagrange equations
become an elliptic system in χ . It is also assumed that solutions χ of Eg(χ) = 0 satisfy the unique continuation
property; for instance Eg satisfies the hypotheses of the Calderón theorem [14]. Theorem 1.1 now easily extends to
cover (3.42) or (3.43).

Proposition 3.7. Let M be a compact manifold with boundary ∂M. Then C3,α solutions (g, χ) of (3.42) on M̄ are
uniquely determined, up to local isometry and inclusion, by the Cauchy data (γ, A) of g and the Cauchy data (χ, ∂tχ)

on an open set U ⊂ ∂M.

Proof. The proof is the same as the proof of Theorem 1.1. Briefly, via a suitable diffeomorphism equal to the identity
on ∂M , one brings a pair of solutions of (3.42) with common Cauchy data into a fixed system of H -harmonic
coordinates for each metric. As before, one then applies Calderón uniqueness to the resulting system (3.42) in the
difference of the metrics and fields. Further details are left to the reader. �

4. Proof of Theorem 1.2

Let g be a conformally compact metric on a compact (n + 1)-manifold M with boundary which has a C2 geodesic
compactification

ḡ = t2g, (4.1)

where t (x) = distḡ(x, ∂M). By the Gauss lemma, one has the splitting

ḡ = dt2
+ gt , (4.2)

near ∂M , where gt is a curve of metrics on ∂M with g0 = γ the boundary metric. The curve gt is obtained by taking
the induced metric the level sets S(t) of t , and pulling back by the flow of N = ∇̄t . Note that if r = − log t , then
g = dr2

+ t−2gt , so the integral curves of ∇r with respect to g are also geodesics. Each choice of boundary metric
γ ∈ [γ ] determines a unique geodesic defining function t .

Now suppose g is Einstein, so that (1.4) holds and suppose for the moment that g is C2 conformally compact with
C∞ smooth boundary metric γ . Then the boundary regularity result of [16] implies that ḡ is C∞ smooth when n
is odd, and is C∞ polyhomogeneous when n is even. Hence, the curve gt has a Taylor-type series in t , called the
Fefferman–Graham expansion [18]. The exact form of the expansion depends on whether n is odd or even. If n is odd,
one has a power series expansion

gt ∼ g(0) + t2g(2) + · · · + tn−1g(n−1) + tng(n) + · · · , (4.3)

while if n is even, the series is polyhomogeneous,

gt ∼ g(0) + t2g(2) + · · · + tng(n) + tn log tH+ · · · . (4.4)

In both cases, this expansion is even in powers of t , up to tn . It is important to observe that the coefficients g(2k),
k ≤ [n/2], as well as the coefficient H when n is even, are explicitly determined by the boundary metric γ = g(0) and
the Einstein condition (1.4), cf. [18,20]. For n even, the series (4.4) has terms of the form tn+k(log t)m .

For any n, the divergence and trace (with respect to g(0) = γ ) of g(n) are determined by the boundary metric γ ; in
fact there is a symmetric bilinear form r(n) and scalar function a(n), both depending only on γ and its derivatives up
to order n, such that

δγ (g(n) + r(n)) = 0, and trγ (g(n) + r(n)) = a(n). (4.5)
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For n odd, r(n) = a(n) = 0. (The divergence-free tensor g(n)+r(n) is closely related to the stress energy of a conformal
field theory on (∂M, γ ), cf. [17]). The relations (4.5) will be discussed further in Section 5.

However, beyond the relations (4.5), the term g(n) is not determined by g(0); it depends on the “global” structure
of the metric g. The higher order coefficients g(k) of tk and coefficients h(km) of tn+k(log t)m , are then determined by
g(0) and g(n) via the Einstein equations. The Eqs. (4.5) are constraint equations, and arise from the Gauss–Codazzi
and Gauss and Riccati equations on the level sets S(t) = {x : t (x) = t} in the limit t → 0; this is also discussed
further in Section 5.

In analogy to the situation in Section 3, the term g(n) corresponds to the second fundamental form A of the
boundary, in that, modulo the constraints (4.5), it is freely specifiable as Cauchy data, and is the only such term
depending on normal derivatives of the boundary metric.

Suppose now g0 and g1 are two solutions of

Ricg +ng = 0, (4.6)

with the same C∞ conformal infinity [γ ]. Then there exist geodesic defining functions tk such that ḡk = (tk)2gk have
a common boundary metric γ ∈ [γ ], and both metrics are defined for tk ≤ ε, for some ε > 0.

The hypotheses of Theorem 1.2, together with the discussion above concerning (4.3) and (4.4), then imply that

|g1 − g0| = o(e−nr ) = o(tn), (4.7)

where the norm is taken with respect to g1 (or g0).
Given this background, we prove the following more general version of Theorem 1.2, analogous to Theorem 3.1.

Let Ω be a domain diffeomorphic to I × Bn , where Bn is a ball in Rn with boundary U = ∂Ω diffeomorphic to a ball
in Rn

' {0} × Rn .

Theorem 4.1. Let g0 and g1 be a pair of conformally compact Einstein metrics on a domain Ω as above. Suppose g0
and g1 have C3,α geodesic compactifications, and (4.7) holds in Ω .

Then (Ω , g0) is isometric to (Ω , g1), by an isometry equal to the identity on ∂Ω . Hence, if (M0, g0) and (M1, g1)

are conformally compact Einstein metrics on compact manifolds with boundary, and (4.7) holds on some open domain
Ω in M0 and M1, then the manifolds M0 and M1 are diffeomorphic in some covering space of each and the lifted
metrics g0 and g1 are isometric.

The proof of Theorem 4.1 is very similar to that of Theorem 3.1. For clarity, we first prove the result in case the
metrics gi , i = 0, 1, have a common C∞ boundary metric γ and then show how the proof can be extended to cover
the more general case of metrics with less regularity.

By applying a diffeomorphism if necessary, one may assume that the metrics gi have a common geodesic defining
function t defined near ∂Ω and common geodesic boundary coordinates. By [16], the geodesically compactified
metrics ḡi = t2gi are C∞ polyhomogeneous and extend C∞ polyhomogeneously to ∂Ω . It follows from the
discussion of the Fefferman–Graham expansion following (4.5) that g0 and g1 agree to infinite order at ∂U , i.e.

k = g1 − g0 = O(tν), (4.8)

for any ν < ∞. Of course k0α = 0.
For the rest of the proof, we work in the setting of the compactified metrics ḡi . As in the proof of Theorem 3.1,

we assume that the domain Ω , now denoted C , is sufficiently small so that (C, ḡi ) is close to the flat metric on the
standard cylinder C = I × Bn , with Ā = 0 on U = ∂0C . (Note that g(1) = 0 in (4.3), (4.4)). In particular, near ∂0C ,
H̄ = O(t). One may construct a foliation Sτ with H̄Sτ = 0, together with corresponding H -harmonic coordinates
(τ, x i ), exactly as in Lemmas 3.2 and 3.3, and satisfying the boundary conditions (3.8). All of the analysis carried out
in Section 3 carries over to this situation with only a single difference. Namely, for the term Ricg in (3.19) or (3.20),
one now no longer has Ricg = λg, but instead the Ricci curvature R̄ic of the compactified metric ḡ. Using the facts
that Ricg = −ng and the compactification ḡ is geodesic, standard formulas for the behavior of Ricci curvature under
conformal change give

R̄ic = −(n − 1)t−1 D̄2t − t−11̄t ḡ. (4.9)
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One has D̄2t = L∇t ḡ = O(t). If (t, yi ) are geodesic boundary coordinates, then ∂x i =
∑
(1 − ε(τ ))∂y j + ε(τ )∇t ,

where ε(τ ) = O(τ ). Similarly, τ/t = 1+ ε(τ ). (The specific form of ε(τ ) of course differs in each occurrence above,
but this is insignificant). Since D̄2t vanishes on ∇t , it follows from (4.9) that in the x i coordinates on Sτ ,

R̄ici j = −(n − 1)(1 − ε)2t−1(L∇t ḡ)i j − (1 − ε)2t−1(1̄t)ḡi j + εt−1(1̄t)qi j , (4.10)

where qi j depends only on ḡ0α to zero order. Next (L∇t ḡ) = (1−ε)∂τ ḡ+ε(τ )∂xα ḡ and similarly for the Laplace term
in (4.10). Substituting (4.10) in (3.20), it follows that the analog of (3.21) in this context is the ‘evolution equation’

τ 2(∂2
τ + u21− 2∂σ ∂τ + ∂2

σ )gi j = −2τ 2u(D2u)i j + Si j (g, τ∂g)+ Qi j (g, τ∂g), (4.11)

where Si j and Qi j have the same meaning as before. Here and below, we drop the bar from the notation.
The lapse u and shift σ satisfy essentially the same equations as before, namely

1u + |A|
2u − (t−11t)u = 0, (4.12)

1σ i
= −2u〈D2x i , A〉 − 2〈dx i , A(∇u)〉. (4.13)

Comparing with (3.23), (3.24), one has here H = 0, with the λ term in replaced by −t−11t . Lemma 3.6 holds as
before, since t−11t is smooth up to ∂0C .

One now proceeds just as in the proof of Theorem 3.1, taking the difference of the Eq. (4.11) to obtain a linear
equation on h = g̃ − g; (recall that the bars have been removed from the notation). Note that by (4.8), together with
elliptic regularity applied to (4.12) and (4.13), as in the proof of Lemma 3.6, one has

hαβ = O(tν), (4.14)

for all ν < ∞. The estimates (3.32)–(3.35) hold as before.
Let P(hi j ) = τ 2(∂2

τ +u21−2∂σ ∂τ +∂2
σ ). Then P is a fully degenerate second-order elliptic operator, with smooth

coefficients, and one has

‖P(hi j )‖L2
x

≤ C‖hi j‖L1,2
τ,x
,

where the first-order derivatives on the right are of the form τ∂ . Further, by (4.14), h vanishes to infinite order at ∂0C .
It then follows from a unique continuation theorem of Mazzeo, [27, Thm. 14], that

hi j = 0

in Ω ⊂ C . The vanishing of h = hαβ in C then follows as before in the proof of Theorem 3.1.
Next suppose g0 and g1 have only a C3,α geodesic compactification with a common boundary metric γ , but

that (4.7) holds. All of the arguments above remain valid, except the infinite order vanishing property (4.8), and
the corresponding (4.14), which are replaced by the statements k = o(tn) and h = o(tn) respectively. The unique
continuation result in [27] per se, requires the infinite order decay (4.14). Thus, it suffices to show that (4.14) does in
fact hold.

To do this, we first show that k = O(tν) weakly, for all ν < ∞. This will imply h = O(tν) weakly, and the strong
or pointwise decay (4.14) then follows from elliptic regularity.

In geodesic boundary coordinates, the geodesic compactification of a conformally compact Einstein metric satisfies
the equation

t g̈ − (n − 1)ġ − 2HgT
− 2t RicS(t)+t H ġ − t (ġ)2 = 0, (4.15)

where ġ is the Lie derivative of g with respect to ∇t , cf. [18] or [21]. Thus ġ = 2A, where A is the second fundamental
form of the level set S(t) of t (with respect to the inward normal). Also H = trA, T denotes restriction or projection
onto S(t) and RicS(t) is the intrinsic Ricci curvature of S(t). (The Eq. (4.15) may be derived from (3.18) by setting
u = 1 and σ = 0.) We recall, as above, that the bar has been removed from the notation.

As above, the metrics g0 and g1 are assumed to have a fixed geodesic defining function t with common boundary
metric γ and common geodesic boundary coordinates. Taking the difference of the Eq. (4.15) evaluated on g1 and g0
gives the following equation for k = g1 − g0 as in (4.8):

t k̈ − (n − 1)k̇ = tr(k̇)gT
0 + 2t (Ric1

S(t)− Ric0
S(t))+ O(t)k + O(t2)k̇, (4.16)
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where O(tk) denotes terms of order tk with coefficients depending smoothly on g0. One has RicS(t) = D2
x (gi j ) is a

second-order operator on gi j , so that (4.16) gives

t k̈ − (n − 1)k̇ = tr(k̇)gT
0 + 2t D2

x (k)+ O(t)k + O(t2)k̇. (4.17)

The (positive) indicial root of the trace-free part of (4.16) or (4.17) is n, in that the formal power series solution of
(4.17) has undetermined coefficient at order tn , as in the Fefferman–Graham expansion (4.3) and (4.4). The hypothesis
(4.7) implies that

k = o(tn), (4.18)

so that this nth-order coefficient vanishes. However, taking the trace of (4.17) gives

t trk̈ − (2n − 1)trk̇ = tr(O(t)k + O(t2k̇))+ 2t tr(D2
x (k)),

which has indicial root 2n. To see that trk is in fact formally determined at order 2n, one uses the trace of the Riccati
equation (3.15) (with u = 1 and σ = 0), which gives

Ḣ + |A|
2

= − Ric(T, T ). (4.19)

Via (4.9), this is easily seen to be equivalent to

t Ḣ − H = −t |A|
2.

This holds for each compactified metric g1 and g0, and so taking the difference, and computing as in (4.16) and (4.17)
gives the equation

t
d2

dt2 (trk)−
d
dt
(trk) = O(t)k + O(t2)k̇. (4.20)

The positive indicial root of (4.20) is 2, and by (4.7), the O(t2) component of the formal expansion of trk vanishes.
Similarly, the trace-free part k0 of k satisfies the equation

t k̈0 − (n − 1)k̇0 = 2t (D2
x (k))0 + [O(t)k]0 + [O(t2)k̇]0, (4.21)

with indicial root n. As in [18], by repeated differentiation of (4.20) and (4.21) it follows from (4.7) that the formal
expansion of k vanishes.

Next we show that (4.8) holds weakly.

Lemma 4.2. Suppose k = o(tn) weakly, in that, with respect to the compactified metric (S(t), g), (g = g0),∫
S(t)

〈k, φ〉 = o(tn), as t → 0, (4.22)

where φ is any symmetric bilinear form, C∞ smooth up to U = ∂0C and vanishing to infinite order on ∂C. Then

k = o(tν), weakly, (4.23)

for any ν < ∞, i.e. (4.22) holds, with ν in place of n.

Proof. Here smoothness is measured with respect to the given geodesic coordinates (t, x i ) covering C . The proof
proceeds by induction, starting at the initial level n. As above, the trace-free and pure trace cases are treated separately,
and so we assume in the following first that φ is trace-free. Pair k with φ and integrate (4.17) over the level sets S(t)
to obtain

t
∫

S(t)
〈k̈, φ〉 − (n − 1)

∫
S(t)

〈k̇, φ〉 = t
∫

S(t)
〈k, P2(φ)〉 +

∫
S(t)

〈O(t)k, φ〉 +

∫
S(t)

〈O(t2)k̇, φ〉. (4.24)

Here P2(φ) is obtained by integrating the D2
x term on the right in (4.17) by parts over S(t). Thus P2(φ), and more

generally, Pk(φ) denote differential operators of order k on φ with coefficients depending on g and g1 and their
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derivatives up to order 2 and so at least continuous up to ∂̄Ω . We use these expressions generically, so their exact form
may change from line-to-line below. Note also there are no boundary terms at ∂S(t) arising from the integration by
parts, by the vanishing hypothesis on ∂C .

For the terms on the right in (4.24) one then has∫
S(t)

〈O(t)k, φ〉 = t
∫

S(t)
〈k, P0(φ)〉,

while, since A = O(t) and H = O(t),∫
S(t)

〈O(t2)k̇, φ〉 = t2
∫

S(t)
〈k̇, P0(φ)〉 = t2 d

dt

∫
S(t)

〈k, P0(φ)〉 − t2
∫

S(t)
〈k, P1(φ)〉.

Similarly, for the terms on the left in (4.24), one has∫
S(t)

〈k̇, φ〉 =
d
dt

∫
S(t)

〈k, φ〉 − t
∫

S(t)
〈k, P1(φ)〉,

while ∫
S(t)

〈k̈, φ〉 =
d2

dt2

∫
S(t)

〈k, φ〉 − 2t
d
dt

∫
S(t)

〈k, P1(φ)〉 +

∫
S(t)

〈k, P1(φ)〉 + t
∫

S(t)
〈k, P2(φ)〉.

Now let

f = f (t) =

∫
S(t)

〈k, φ〉.

Then the computations above give

t f̈ − (n − 1) ḟ = t
∫

S(t)
〈k, P2(φ)〉 + (1 + t2)

∫
S(t)

〈k, P1(φ)〉

+
d
dt

∫
S(t)

t2
〈k, P0(φ)〉 +

d
dt

∫
S(t)

t〈k, P1(φ)〉. (4.25)

First observe that∫
S(t)

〈k, φ〉 = o(tn) ⇒

∫
S(t)

〈k, Pk(φ)〉 = o(tn), (4.26)

for all C∞ forms φ vanishing to infinite order at ∂C . For if the left side of (4.26) holds, then
∫

S(t)〈k, ∂
kφ〉 = o(tn),

since the hypotheses on φ are closed under differentiation. The coefficients of Pk are at least continuous, and it is
elementary to verify that if

∫
S(t)〈k, ∂

kφ〉 = o(tn), then
∫

S(t)〈k, φ∂
kφ〉 = o(tn), for any function φ continuous on C̄ .

Note that the same result holds with p in place of n, for any p < ∞.
It follows from (4.26) and the initial hypothesis (4.22) that the first two terms on the right in (4.25) are o(tn) as

t → 0. Since t f̈ − (n − 1) ḟ = tn d
dt (

ḟ
tn−1 ), this gives

d
dt

(
ḟ

tn−1

)
= o(1)+ t−n d

dt

∫
S(t)

t〈k, P1(φ)〉 + t−n d
dt

∫
S(t)

t2
〈k, P0(φ)〉.

Integrating from 0 to t implies

ḟ

tn−1 = o(t)+ t−n+1
∫

S(t)
〈k, P1(φ)〉 + n

∫ t

0
t−n

∫
S(t)

〈k, P1(φ)〉 + c1 = o(t)+ c1,

where c1 is a constant. A further integration using (4.26) again gives

f = o(tn+1)+ c′

1tn
+ c2, (4.27)

where c′

1 =
c1
n . Once more by (4.22), this implies that

f = o(tn+1).
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Note the special role played by the indicial root n here; if instead one had only k = O(tn), then the argument above
does not give k = O(tn+1) weakly.

This first estimate holds in fact for any given trace-free φ which is C2 on C̄ , and vanishing to first order on ∂C .
Working in the same way with the trace equation (4.20) shows that the same result holds for pure trace terms. In
particular, it follows that

k = o(tn+1) weakly. (4.28)

One now just repeats this argument inductively, with the improved estimate (4.28) in place of (4.22), using (4.26)
inductively. Note that each inductive step requires higher differentiability of the test function φ and its higher order
vanishing at ∂C . �

Lemma 4.2 proves that k = kαβ = O(tν) weakly, for any ν < ∞. As discussed in Section 3, the transition from
geodesic boundary coordinates to H -harmonic coordinates is C2,α and hence

h = hαβ = O(tν), (4.29)

weakly, with the level sets S(t) replaced by Sτ . Next, as in Remark 3.5 and the proof of Theorem 3.1, the Eqs. (4.11)–
(4.13) satisfy elliptic estimates, and elliptic regularity in weighted Hölder spaces, cf. [26,20], shows that the weak
decay (4.29) implies strong or pointwise decay, i.e. (4.14) holds. The proof of Theorem 4.1 and thus Theorem 1.2 is
now completed as before in the C∞ smooth case. �

Remark 4.3. In [3, Thm. 3.2], a proof of unique continuation of conformally compact Einstein metrics was given
in dimension 4, using the fact that the compactified metric g̃ in (1.1) satisfies the Bach equation, together with the
Calderón uniqueness theorem. However, the proof in [3] used harmonic coordinates; as discussed in Section 2, such
coordinates do not preserve the Cauchy data. The first author is grateful to Robin Graham for pointing this out.
Theorem 1.2 thus corrects this error, and generalizes the result to any dimension.

For the work to follow in Section 5, we note that Theorem 4.1 also holds for linearizations of the Einstein equations,
i.e. forms k satisfying

d
dt
(Ricg+tk +n(g + tk))|t=0 = 0. (4.30)

Thus, if k satisfies (4.30) and the analog of (4.7), i.e. |k| = o(tn), then k is pure gauge in Ω , in that k = δ∗Z , where Z
is a vector field on Ω with Z = 0 on ∂Ω . The proof of this is exactly the same as the proof of Theorem 4.1, replacing
the finite difference k = g1 − g0 by an infinitesimal difference.

This has the following consequence:

Corollary 4.4. Let (M, g) be a conformally compact Einstein manifold with metric g having a C3,α geodesic
compactification. Suppose the topological condition (1.5) holds, i.e. π1(M, ∂M) = 0.

If k is an infinitesimal Einstein deformation on M as in (4.30), in divergence-free gauge, i.e.

δk = 0, (4.31)

with k = o(tn) on approach to ∂M, then

k = 0 on M.

Proof. The topological condition (1.5), together with the same analytic continuation argument at the end of the proof
of Theorem 3.1, implies that k is pure gauge globally on M , in that k = δ∗Z on M with Z = 0 on ∂M . (Recall that
(1.5) implies that ∂M is connected.) From (4.31), one then has

δδ∗Z = 0,

on M . Pairing this with Z and integrating over B(t), it follows that∫
B(t)

|δ∗Z |
2

=

∫
S(t)

δ∗Z(Z , N ),
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where N is the unit outward normal. Since |Z |g is bounded and |δ∗Z |vol(S(t)) = o(1) (since |k| = o(tn)), it follows
that ∫

M
|δ∗Z |

2
= 0,

which gives the result. �

Of course, analogs of these results also hold for bounded domains, via the proof of Theorem 3.1; the verification is
left to the reader.

Remark 4.5. The analog of Proposition 3.7 most likely also holds in the setting of conformally compact metrics, for
fields τ whose Euler–Lagrange equation is a diagonal system of Laplace-type operators to leading order, as in (3.40)
or (3.41). The proof of this is basically the same as that of Proposition 3.7, using the proof of Theorem 1.2 and with
the Mazzeo unique continuation result in place of that of Calderón. However, we will not carry out the details of the
proof here.

5. Isometry extension and the constraint equations

In this section, we prove Theorem 1.3 that continuous groups of isometries at the boundary extend to isometries
in the interior of complete conformally compact Einstein metrics and relate this issue in general to the constraint
equations induced by the Gauss–Codazzi equations.

We begin with the following elementary consequence of Theorem 4.1.

Proposition 5.1. Let (Ω , g) be a Cn polyhomogeneous conformally compact Einstein metric on a domain Ω ' Bn+1

with boundary metric γ on ∂Ω ' Bn . Suppose X is a Killing field on (∂Ω , γ ) and

LX g(n) = 0, (5.1)

where g(n) is the nth term in the Fefferman–Graham expansion (4.3) or (4.4).
Then X extends to a Killing field on (Ω , g).

Proof. Extend X to a smooth vector field on Ω by requiring [X, N ] = 0, where N = ∇ log t and t is the geodesic
defining function determined by g and γ . Let φs be the corresponding 1-parameter group of diffeomorphisms and set
gs = φ∗

s g. Then t is the geodesic defining function for gs for any s, and the pair (g, gs) satisfy the hypotheses of
Theorem 4.1. Theorem 4.1 then implies that gs is isometric to g, i.e. there exist diffeomorphisms ψs of Ω , equal to
the identity on ∂Ω , such that ψ∗

s φ
∗
s g = g. Thus φs ◦ ψs is a 1-parameter group of isometries of g defined in Ω , with

Y the corresponding Killing field. (In fact, Y = X , since any Killing field Y tangent to ∂Ω preserves the geodesics
tangent to N , and so [Y, N ] = 0. This determines Y uniquely in terms of its value at ∂Ω . Since X satisfies the same
equation with the same initial value, this gives the claim). �

We point out that the same result, and proof, also hold in the case of Einstein metrics on bounded domains, via
Theorem 3.1; the condition (5.1) is of course replaced by LX A = 0. For some examples and discussion in the bounded
domain case, see [1,2].

Suppose now that (M, g) is a (global) conformally compact Einstein metric and there is a domain Ω as in
Proposition 5.1 contained in M on which (5.1) holds. Then by analytic continuation as discussed at the end of the
proof of Theorem 3.1, X extends to a local Killing field on all of M , i.e. X extends to a Killing field on the universal
cover M̃ . In particular, if the condition (1.5) holds, i.e. π1(M, ∂M) = 0, then X extends to a global Killing field on
M . Again, the same result holds in the context of bounded domains.

Remark 5.2. A natural analog of Proposition 5.1 holds for conformal Killing fields on (∂Ω , γ ), i.e. vector fields
which preserve the conformal class [γ ] at conformal infinity. Such vector fields satisfy the conformal Killing equation

L̂Xγ = LXγ −
tr(LXγ )

n
γ = 0. (5.2)



198 M.T. Anderson, M. Herzlich / Journal of Geometry and Physics 58 (2008) 179–207

Namely, since we are working locally, it is well known – and easy to prove – that any non-vanishing conformal Killing
field is Killing with respect to a conformally related metric γ̃ = λ2γ , so that

LX γ̃ = 0.

Hence, if LX g̃(n) = 0, then Proposition 5.1 implies that X extends to a Killing field on Ω .
One may express g̃(n) in terms of λ and the lower order terms g(k), k < n in the Fefferman–Graham expansion (4.3)

and (4.4); however, the expressions become very complicated for n even and large, cf. [17]. Thus, while the Eq. (5.2)
is conformally invariant, the corresponding conformally invariant equation for g(n) will be complicated in general.

Next we consider the constraint equations (4.5) in detail, i.e.

δτ(n) = 0 and trτ(n) = a(n), (5.3)

where τ(n) = g(n) + r(n); r(n) and a(n) are explicitly determined by the boundary metric γ = g(0) and its derivatives
up to order n. Both vanish when n is odd.

As will be seen below, the most important issue is the divergence constraint in (5.3), which arises from the
Gauss–Codazzi equations. To see this, in the setting of Section 4, on S(t) ⊂ (M, g), the Gauss–Codazzi equations are

δ(A − Hg) = − Ric(N , ·), (5.4)

as 1-forms on S(t); here N = −t∂t is the unit outward normal. The same equation holds on a geodesic
compactification (M, ḡ). If g is Einstein, then Ric(N , ·) = R̄ic(N̄ , ·) = 0; the latter equality follows from (4.9).
The Eq. (5.4) holds for all t small, and differentiating (n − 1) times with respect to t gives rise to the divergence
constraint in (5.3).

The Gauss–Codazzi equations are not used in the derivation and properties of the Fefferman–Graham expansion
(4.3) and (4.4) per se. The derivation of these equations involves only the tangential (i j) part of the Ricci curvature.
The asymptotic behavior of the normal (00) part of the Ricci curvature gives rise to the trace constraint in (5.3), cf.
(4.19) and (4.20).

Let T be the space of pairs (g(0), τ(n)) satisfying (5.3). If τ 0
(n) is any fixed solution of (5.3), then any other solution

with the same g(0) is of the form τ(n) = τ 0
(n) + τ , where τ is transverse-traceless with respect to g(0). (Of course if

n is odd, one may take τ 0
(n) = 0). The space T is naturally projects onto Met(∂M) with fiber at γ an affine space of

symmetric tensors and is a subset of the product Met(∂M)× S2(∂M) ' T (Met(∂M)). Let

π : T → Met(∂M) (5.5)

be the projection onto the base space Met(∂M) (the first factor projection).
By the discussion in Section 4, (g(0), τ(n)) ∈ T if and only if the corresponding pair (g(0), g(n)) determine a formal

polyhomogeneous solution to the Einstein equations near conformal infinity, i.e. formal series solutions containing
log terms, as in (4.3) and (4.4). In fact, if g(0) and g(n) are real–analytic on ∂M , a result of Kichenassamy [24] implies
that the series (4.3) or (4.4) converges, and gives an Einstein metric g, defined in a neighborhood of ∂M . The metric g
is complete near ∂M and has a conformal compactification inducing the given data (g(0), g(n)) on ∂M . Here we recall
from the discussion in Section 4 that all coefficients of the expansion (4.3) or (4.4) are determined by g(0) and g(n).

In this regard, consider the following:
Problem. Is π : T → Met(∂M) an open map? Thus, given any (g(0), τ(n)) ∈ T and any boundary metric g̃(0)
sufficiently close to g(0), does there exist τ̃(n) close to τ(n) such that (g̃(0), τ̃(n)) ∈ T .

Although π is obviously globally surjective, the problem above is whether π is locally surjective. For example, a
simple fold map x → x3

− x is not locally surjective near ±
√

3/3. Observe that the trace condition in (5.3) imposes
no constraint on g(0); given any g(0), it is easy to find g(n) such that trg(0)(g(n) + r(n)) = a(n); this equation can readily
be solved algebraically for many g(n).

By the inverse function theorem, it suffices (and is probably also necessary), to examine the problem above at the
linearized level. However the linearization of the divergence condition in (5.3) gives a non-trivial constraint on the
variation h(0) of g(0). Namely, the linearization in this case gives

δ′(τ(n))+ δ(τ(n))
′
= 0, (5.6)

where δ′ =
d

du δg(0)+uh(0) , and similarly for (τ(n))′.
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Whether (5.6) is solvable for any h(0) ∈ S2(∂M) depends on the data g(0) and g(n). For example, it is trivially
solvable when τ(n) = 0. For compact ∂M , one has

Ω1(∂M) = Im δ ⊕ Ker δ∗, (5.7)

where Ω1 is the space of 1-forms, so that solvability in general requires that

δ′(τ(n)) ∈ Im δ = (Ker δ∗)⊥. (5.8)

Of course Ker δ∗ is exactly the space of Killing fields on (∂M, γ ), and so this space serves as a potential obstruction
space.

Clearly then π is locally surjective when (∂M, g(0)) has no Killing fields. On the other hand, it is easy to construct
examples where (∂M, γ ) does have Killing fields and π is not locally surjective:

Example 5.3. Let (∂M, g(0)) be the flat metric on the n-torus T n , n ≥ 3, and define g(n) = −(n − 2)(dθ2)2 +

(dθ3)2 + · · ·+ (dθn)2. Then g(n) is transverse-traceless with respect to g(0). Let f = f (θ1). Then ĝ(n) = f g(n) is still
transverse-traceless with respect to g(0), so that (g(0), ĝ(n)) ∈ T , at least for n odd.

It is then not difficult to see via a direct calculation, or more easily via Proposition 5.4, that (5.8) does not hold, so
that π is not locally surjective.

Next we relate these two issues, i.e. the general solvability of the divergence constraint (5.8) and the extension of
Killing fields on the boundary into the bulk. The following result holds for general φ ∈ S2(∂M) with δφ = 0 on ∂M .

Proposition 5.4. If X is a Killing field on (∂M, γ ), with ∂M compact, then∫
∂M

〈LXτ(n), h(0)〉dV = −2
∫
∂M

〈δ′(τ(n)), X〉dV, (5.9)

where δ′ =
d
ds δγ+sh(0) . In particular, (5.1) holds for all Killing fields on (∂M, γ ) if and only if the linearized divergence

constraint vanishes, i.e. (5.8) holds.

Proof. Since X is a Killing field on (∂M, γ ), one has∫
∂M

〈LXτ, h〉dVγ = −

∫
∂M

〈τ,LX h〉dVγ . (5.10)

Setting γs = γ + sh, the divergence theorem gives

0 =

∫
∂M
δγs (τ (X))dVγs =

∫
∂M

〈δγs τ, X〉dVγs −
1
2

∫
∂M

〈τ,LXγs〉dVγs , (5.11)

where the second equality is a simple computation from the definitions; the inner products are with respect to γs .
Taking the derivative with respect to s at s = 0, and using the facts that X is Killing and δ(τ ) = 0, it follows that∫

∂M
〈δ′τ, X〉dV −

1
2

∫
∂M

〈τ,LX h〉dV = 0. (5.12)

Combining this with (5.10) then gives (5.9); note that LXr(n) = 0 in this case, since r(n) is determined by the boundary
metric.

To prove the last statement, by (5.9), (5.1) holds if and only if
∫
∂M 〈δ′(τ(n)), X〉 = 0, for all variations h. If (5.8)

holds, then δ′(τ(n)) = δh′

(n), for some h′

(n) and so
∫
∂M 〈δ′(τ(n)), X〉 =

∫
∂M 〈h′

(n), δ
∗ X〉 = 0, since X is Killing. The

converse of this argument holds equally well. �

Proposition 5.4 implies that in general, Killing fields on ∂M do not extend to Killing fields in a neighborhood of
∂M (cf. Example 5.3). (Exactly the same result and proof hold in the bounded domain case, when the term τ(n) is
replaced by A − Hg).

Now as noted above, whether isometry extension holds or not depends on the term τ(n) = g(n) + r(n), or more
precisely on the relation of the boundary metric g(0) with τ(n). For Einstein metrics which are globally conformally
compact, the term τ(n) is determined, up to a finite dimensional moduli space, by the boundary metric g(0); (this is
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discussed further below). Thus, whether isometry extension holds or not is quite a delicate issue; if so, it must depend
crucially on the global structure of (M, g).

Before beginning the proof of Theorem 1.3, we first need to discuss some background material from [5,6].
Let E AH be the space of conformally compact, or equivalently asymptotically hyperbolic Einstein metrics on M

which have a C∞ polyhomogeneous conformal compactification with respect to a fixed smooth defining function ρ,
as in (1.1). In [5], it is shown that E AH is a smooth, infinite dimensional manifold. One has a natural smooth boundary
map

Π : E AH → Met(∂M), (5.13)

sending g to its boundary metric γ .
The moduli space EAH is the quotient E AH/D1, where D1 is the group of smooth (polyhomogeneous)

diffeomorphisms φ of M equal to the identity on ∂M . Thus, g′
∼ g if g′

= φ∗g, with φ ∈ D1. Changing the
defining function ρ in (1.1) changes the boundary metric conformally. Also, if φ ∈ D1 then ρ ◦ φ is another defining
function, and all defining functions are of this form near ∂M . Hence if C denotes the space of smooth conformal
classes of metrics on ∂M , then the boundary map (5.13) descends to a smooth map

Π : EAH → C (5.14)

independent of the defining function ρ. The boundary map Π in (5.14) is Fredholm, of Fredholm index 0.
The linearization of the Einstein operator Ricg +ng at an Einstein metric g is given by

L̂ = (Ricg +ng)′ =
1
2

D∗ D − R − δ∗β, (5.15)

acting on the space of symmetric 2-tensors S2(M) on M , cf. [10]. Here (as in Section 3), β is the Bianchi operator,
β(h) = δh +

1
2 dtrh, Thus, h ∈ Tg E AH if and only if

L̂(h) = 0.

The operator L̂ is not elliptic, due to the δ∗β term. As is well known, this arises from the diffeomorphism group, and
to obtain an elliptic linearization, one needs a gauge choice to break the diffeomorphism invariance of the Einstein
equations. We will use a slight modification of the Bianchi gauge introduced in [11].

To describe this, given any fixed g0 ∈ E AH with geodesic defining function t and boundary metric γ0, let γ be a
boundary metric near γ0 and define the hyperbolic cone metric gγ on γ by setting

gγ = t−2(dt2
+ γ );

gγ is defined in a neighborhood of ∂M . Next, set

g(γ ) = g0 + η(gγ − gγ0), (5.16)

where η is a non-negative cut-off function supported near ∂M with η = 1 in a small neighborhood of ∂M . Any
conformally compact metric g near g0, with boundary metric γ then has the form

g = g(γ )+ h, (5.17)

where |h|g0 = O(t2); equivalently h̄ = t2h satisfies h̄i j = O(t2) in any smooth coordinate chart near ∂M . The space
of such symmetric bilinear forms h is denoted by S2(M) and the space of metrics g of the form (5.17) is denoted by
MetAH .

The Bianchi-gauged Einstein operator (with background metric g0), is defined by

Φg0 : MetAH → S2(M) (5.18)

Φg0(g) = Φ(g(γ )+ h) = Ricg +ng + (δg)
∗βg(γ )(g),

where βg(γ ) is the Bianchi operator with respect to g(γ ). By [11, Lemma I.1.4],

Z AH ≡ Φ−1(0) ∩ {Ric < 0} ⊂ E AH , (5.19)
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where {Ric < 0} is the open set of metrics with negative Ricci curvature. In fact, if g ∈ E AH is close to g0, and
Φ(g) = 0, then βg(γ )(g) = 0 and moreover

δg(γ )(g) = 0 and trg(γ )(g) = 0. (5.20)

The space Z AH is a local slice for the action of D1 on E AH : for any g ∈ E AH near g0, there exists a diffeomorphism
φ ∈ D1 such that φ∗g ∈ Z AH , cf. again [11].

The linearization of Φ at g0 ∈ E AH with respect to the second variable h has the simple form

(D2Φ)g0(ḣ) =
1
2

D∗ Dḣ − Rg0(ḣ), (5.21)

while the variation of Φ at g0 with respect to the first variable g(γ ) has the form

(D1Φ)g0(ġ(γ )) = (D2Φ)g0(ġ(γ ))− δ∗g0
βg0(ġ(γ )) = (Ricg +ng)′(ġ(γ )), (5.22)

as in (5.15). Clearly ġ(γ ) = ηt−2γ̇ . The kernel of the elliptic self-adjoint linear operator

L =
1
2

D∗ D − R (5.23)

acting on the second variable h, represents the space of non-trivial infinitesimal Einstein deformations vanishing on
∂M . Let K denote the L2 kernel of L . This is the same as the kernel of L on S2(M), cf. [11,26]. An Einstein metric
g0 ∈ E AH is called non-degenerate if

K = 0. (5.24)

For g0 ∈ EAH the kernel K = Kg0 equals the kernel of the linear map DΠ : Tg0EAH → TΠ (g0)C. Hence, g0 is
non-degenerate if and only if g0 is a regular point of the boundary map Π in which case Π is a local diffeomorphism
near g0. From now on, we denote g0 by g.

By the regularity result of Chruściel et al. [16], any κ ∈ K has a C∞ smooth polyhomogeneous expansion,
analogous to the Fefferman–Graham expansion (4.3) and (4.4), with leading order terms satisfying

κ = O(tn), κ(N , Y ) = O(tn+1), κ(N , N ) = O(tn+1+µ), (5.25)

where N = −t∂t is the unit outward normal vector to the t-level set S(t), Y is any g-unit vector tangent to S(t) and
µ > 0; cf. also [28, Prop. 5]. Here κ = O(tn) means |κ|g = O(tn). Also by an argument similar to the one leading to
(5.20), any κ ∈ K is transverse-traceless, i.e.

δκ = trκ = 0. (5.26)

Given this background, we are now ready to begin the proof of Theorem 1.3.

Proof of Theorem 1.3. Let ḡ = t2g be a geodesic compactification of g with boundary metric γ . By the boundary
regularity result of [16], ḡ is C∞ polyhomogeneous on M̄ . It suffices to prove Theorem 1.3 for arbitrary 1-parameter
subgroups of the isometry group of (∂M, γ ). Thus, let φs be a local 1-parameter group of isometries of γ with
φ0 = id , so that

φ∗
s γ = γ.

The diffeomorphisms φs of ∂M may be extended to diffeomorphisms of M , so that the curve

gs = φ∗
s g (5.27)

is a smooth curve in E AH . By construction then, Π [gs] = [γ ], so that [h] = [
dgs
ds ] ∈ Ker DΠ , for Π as in (5.14). One

may then alter the diffeomorphisms φs by composition with diffeomorphisms inD1 if necessary, so that h =
dgs
ds ∈ Kg ,

where Kg is the kernel in (5.24). Denoting h = κ , it follows that

κ = δ∗ X, (5.28)

where X = dφs/ds is smooth up to M̄ .
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Thus it suffices to prove that δ∗ X = 0, since this will imply that gs = g (when gs is modified by the action of D1).
If Kg = 0, i.e. if g is a regular point of the boundary map Π , then this is now obvious (from the above), and proves
the result in this special case; (the proof in this case requires only that (M, g) be C2,α conformally compact).

We give two different (although related), proofs of Theorem 1.3, one conceptual and one more computational. The
first, conceptual, proof involves an understanding of the cokernel of the map DΠg in Met(∂M), and so one first needs
to give an explicit description of this cokernel. To begin, recall the derivative

(DΦ)g : Tg MetAH (M) → TΦ(g)S2(M). (5.29)

Via (5.17), one has Tg MetAH = Tγ Met(∂M) ⊕ ThS2(M) and the derivative with respect to the second factor is
given by (5.21). If K = 0, then D2Φ is surjective at g (since D2Φ has index 0, and we recall that the kernel and
cokernel here are equal to their L2 counterparts), and hence so is DΠ . In general, to understand Coker DΠ , we
show that DΦ is always surjective; this follows from the claim that for any non-zero κ ∈ K there is a tangent vector
ġ(γ ) ∈ Tγ Met(∂M) ⊂ Tg MetAH such that∫

M
〈(D1Φ)g(ġ(γ )), κ〉dVg 6= 0. (5.30)

Thus, the boundary variations ġ(γ ) satisfying (5.30) for some κ correspond to the cokernel. To prove (5.30), let
B(t) = {x ∈ M : t (x) ≥ t} and S(t) = ∂B(t) = {x ∈ M : t (x) = t}. Apply the divergence theorem to the integral
(5.30) over B(t); twice for the Laplace term in (5.22) and once for the δ∗ term in (5.22). Since

κ ∈ Ker L and δκ = 0,

it follows that the integral (5.30) reduces to an integral over the boundary, and gives∫
B(t)

〈(D1Φ)g(ġ(γ )), κ〉dVg =
1
2

∫
S(t)
(〈ġ(γ ),∇Nκ〉 − 〈∇N ġ(γ ), κ〉 − 2〈β(ġ(γ )), κ(N )〉)dVS(t). (5.31)

Of course dVS(t) = t−ndVγ + O(t−(n−1)). By (5.25) the last term in (5.31) is then O(t) and so may be ignored. Let

κ̃ = t−nκ, (5.32)

so that by (5.25), |̃κ|g|S(t) ≤ C . Setting κ̂ = t2κ̃ , one has |κ̂|ḡ = |̃κ|g , and so the same is true for |κ̂|ḡ . From the
definition (5.16), a straightforward computation shows that near ∂M ,

ġ(γ ) = t−2γ̇ , and ∇N ġ(γ ) = 0.

Note that |ġ(γ )|g ∼ 1 as t → 0. Hence,

(〈ġ(γ ),∇Nκ〉g − 〈∇N ġ(γ ), κ〉)gdVS(t) = t2
〈∇Nκ, γ̇ 〉γ dVS(t) + O(t)

= 〈∇N κ̂ − (n − 2)κ̂, γ̇ 〉γ dVγ + O(t).

Thus, ∫
B(t)

〈(D1Φ)g(ġ(γ )), κ〉dVg =
1
2

∫
S(t)

〈∇N κ̂ − (n − 2)κ̂, γ̇ 〉γ dVγ + O(t). (5.33)

Now suppose (contrary to (5.30)),

∇N κ̂ − (n − 2)κ̂ = O(t), (5.34)

as forms on (S(t), ḡ); note however that ∇ is taken with respect to g in (5.34). It follows from the smooth
polyhomogeneity of κ̂ near ∂M and elementary integration that (5.34) gives

κ = o(tn). (5.35)

The form κ is an infinitesimal Einstein deformation, divergence-free by (5.26). Thus Corollary 4.4 (cf. also [5,
Thm. 3.1]), and (5.35), together with the assumption in Theorem 1.3 that π1(M, ∂M) = 0, imply that

κ = 0 on M,

giving a contradiction. This proves the relation (5.30).
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The proof above shows that the form

ġ(γ ) = lim
t→0

κ̂|S(t), (5.36)

on ∂M satisfies (5.30). The limit here exists by the smooth polyhomogeneity of κ at ∂M . Thus, the space

K̂ = {κ̂ = lim
t→0

t−(n−2)κ|S(t) : κ ∈ K }, (5.37)

is naturally identified with the cokernel of DΠg in Tγ Met(∂M). Note that dim K̃ = dim K and also that the estimates
(5.25) show that κ̂ = κ̂T on ∂M . This means that infinitesimal deformations of the boundary metric γ in the direction
κ̂ , κ̂ ∈ K̂ , are not realized as d

ds Π (gs)|s=0, where gs is a curve in E AH through g, i.e. a curve of global Einstein
metrics on M . On the other hand, suppose that κ = δ∗ X , i.e. (5.28) holds for some κ ∈ K and vector field X on M
(necessarily) inducing a Killing field on (∂M, γ ). Consider the local curve of metrics

gs = g + sδ∗
(

X

tn

)
(5.38)

defined in a neighborhood of ∂M . The curve gs is Einstein to 1st order in s at s = 0. The induced variation of the
boundary metric on S(t) is, by construction, (κ̃)T |S(t) ∼ κ̃|S(t), which, by rescaling, compactifies to κ̂ at ∂M ; here
κ̃ is given as in (5.32). Now note that the linearized divergence constraint (5.6) or (5.8) only involves the behavior at
∂M , or equivalently, the limiting behavior on (S(t), γt ), γt = ḡ|S(t), as t → 0. This basically shows that the constraint
(5.6) may be solved in the direction h(0) = κ̂; a complete justification of this is given in the more computational proof
to follow. Also, a simple calculation, cf. (5.42) below, gives LXτ (n) = LX g(n) = 2κ̂ . (The first statement follows since
the term r(n) is intrinsic to the boundary metric γ , so that LXr (n) = 0). Hence, it follows from Proposition 5.4 that

2
∫
∂M

|κ̂|2dVγ =

∫
∂M

〈LXτ (n), κ̂〉dVγ = 2
∫
∂M

〈δ(τ ′

(n)), X〉dVγ = 2
∫
∂M

〈τ ′

(n), δ
∗ X〉dVγ = 0, (5.39)

and thus LXτ (n) = 0 on (∂M, γ ). Corollary 4.4 or Proposition 5.1 and the assumption π1(M, ∂M) = 0 then imply
that κ = 0 on M , so that X is a Killing field on M . This completes the first proof of Theorem 1.3. �

From the converse part of Proposition 5.4, one also obtains:

Corollary 5.5. Let g be a conformally compact Einstein metric on a compact manifold M with C∞ boundary metric
γ . Then the linearized divergence constraint equation (5.6) is always solvable on (∂M, γ ), i.e. the map π in (5.5) is
locally surjective at (γ, τ(n)).

It is useful and of interest to give another, direct computational proof of Theorem 1.3, without using the
identification (5.37) as the cokernel of DΠ . The basic idea is to compute as in Proposition 5.4 on (S(t), gt ), with
A − Hgt in place of τ(n), and then pass to the limit on ∂M . Throughout the proof, we assume (5.28) holds.

Before starting the proof per se, we note that the estimates (5.25) and (5.28) imply that X is tangential, i.e. tangential
to (S(t), g), to high order, in that

〈X, N 〉 = O(tn+1+µ). (5.40)

To see this, one has (δ∗ X)(N , N ) = 〈∇N X, N 〉 = N 〈X, N 〉. Thus (5.40) follows from (5.25) and the claim that
〈X, N 〉 = 0 on ∂M . To prove the latter, consider the compactified metric ḡ = t2g. One has LX ḡ = LX (t2g) =

2 X (t)
t ḡ + O(tn). Thus for the induced metric γ on ∂M , LXγ = 2λγ , where λ = limt→0

X (t)
t . Since X is a Killing

field on (∂M, γ ), this gives λ = 0, which is equivalent to the statement that limt→0〈X, N 〉g = 0. Note also that since
X is smooth up to ∂M , |X |g = O(t−1).

We claim also that

[X, N ] = O(tn+1), (5.41)

in norm. First, 〈[X, N ], N 〉 = 〈∇X N − ∇N X, N 〉 = −(δ∗ X)(N , N ) = O(tn+1+µ). On the other hand, on tangential
g-unit vectors Y , 〈[X, N ], Y 〉 = 〈∇X N −∇N X, Y 〉 ∼ 〈∇X N , Y 〉− 2(δ∗ X)(N , Y )+〈∇Y X, N 〉 ∼ −2(δ∗ X)(N , Y ) =

O(tn+1), as claimed. Here ∼ denotes equality modulo terms of order o(tn). We have also used the fact that
〈∇X N , Y 〉 + 〈∇Y X, N 〉 ∼ X〈N , Y 〉 = 0.
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Now, to begin the proof itself (assuming (5.28)), as above write

gs = g + sκ + O(s2) = g + sδ∗ X + O(s2).

If ts is the geodesic defining function for gs (with boundary metric γ ), then the Fefferman–Graham expansion gives
ḡs = dt2

s + (γ + t2
s g(2),s + · · · + tn

s g(n),s)+ O(tn+1). The estimate (5.40) implies that ts = t + sO(tn+2+α)+ O(s2),
so that modulo lower order terms, we may view ts ∼ t . Taking the derivative of the FG expansion with respect to s at
s = 0, and using the fact that X is Killing on (∂M, γ ), together with the fact that the lower order terms g(k), k < n,
are determined by γ , it follows that, for k̂ as in (5.37),

κ̂ =
1
2
LX g(n), (5.42)

at ∂M . Here both κ̂ and LX g(n) are viewed as forms on (∂M, γ ).
Next, we claim that on (S(t), gt ),

LX A = −
n − 2

2
tn−2LX g(n) + O(tn−1). (5.43)

To see this, one has A =
1
2LN g = −

1
2Lt∂t g = −

1
2Lt∂t (t−2gt ). But Lt∂t (t−2gt ) =

∑
Lt∂t (t−2+k g(k)) =∑

(k − 2)tk−2g(k). The same reasoning as before then gives (5.43).
Given these results, we now compute∫

S(t)
〈LX (A − Hgt ), κ̃〉gt dVS(t);

compare with the left side of (5.9). First, by (5.43),∫
S(t)

〈LX A, κ̃〉gt dVS(t) = −
n − 2

2

∫
S(t)

〈LX g(n), κ̂〉γ dVγ + O(t).

Next, one has LX (Hgt ) = X (H)gt + HLX gt . For the first term, X (H) = trLX A + O(tn) = −
n−2

2 tn−2trLX g(n) +

O(tn). Since trg(n) is intrinsic to γ and X is Killing on (∂M, γ ), it follows that X (H) = O(tn−1). Also,
〈gt , κ̃〉 = trT κ̃ , where trT is the tangential trace. By (5.25) and the fact that κ is trace-free, 〈gt , κ̃〉 = O(t1+α). Hence
X (H)〈gt , κ̃〉dVS(t) = O(tα). Similarly, from (5.41) one computes LX gt = LX g + O(tn+1) = 2tn κ̃+ O(tn+1). Since
H ∼ n, using (5.42) this gives

−

∫
S(t)

〈LX (Hgt ), κ̃〉dVS(t) = −n
∫

S(t)
〈LX g(n), κ̂〉γ dVγ + O(tα).

Combining these computations then gives∫
S(t)

〈LX (A − Hgt ), κ̃〉gt dVS(t) = −

(
n − 2

2
+ n

) ∫
∂M

〈LX g(n), κ̂〉γ dVγ + o(1). (5.44)

On the other hand, one may use the method of proof of Proposition 5.4 to compute the left side of (5.44). First
since on S(t), τ = A − Hgt is divergence-free, a slight extension of the calculation (5.9) gives, for any vector field Y
tangent to S(t) and variation h of gt = g|s(t) on S(t),∫

S(t)
〈LY τ, h〉gt dVgt = −2

∫
S(t)

〈δ′(τ ), Y 〉dVgt +

∫
S(t)

[δY 〈τ, h〉 + 〈τ, δ∗Y 〉trh]dVgt . (5.45)

Now let the tangential variation h be given by h = (∂∗ X
tn )

T where δ∗ = ∂∗
g . Thus, h = (t−nκ)T = (κ̃T ), for κ̃ as

in (5.32). Also, set Y = X T . Observe that the estimate (5.40) implies that X agrees with X T to high degree, in that
X = X T

+ O(n+1+µ). This has the effect that one may use X and X T interchangably in the computations below. For
example, since κ is trace-free, δg X = 0 and hence a simple calculation shows that δgt Y = O(tn+1+µ). Similarly,
trT h = O(t1+µ), while δ∗Y = O(tn). In particular, the second term on the right in (5.45) is O(t), and hence may be
ignored.



M.T. Anderson, M. Herzlich / Journal of Geometry and Physics 58 (2008) 179–207 205

Next, the deformation h above is the tangential part of a (trivial) infinitesimal Einstein deformation, and hence
the linearized divergence constraint (5.6) holds along S(t), in the direction h. Arguing then as in the proof of
Proposition 5.4, it follows from (5.45) and the fact that X T

∼ X to high order that∫
S(t)

〈LX (A − Hgt ), κ̃〉gt dVS(t) = 2
∫

S(t)
〈(A − Hgt )

′, (δ∗ X)T 〉dVgt + O(t). (5.46)

Now A′
=

d
ds (Ag+sκ̃) =

1
2 (LN κ̃ + LN ′ g) =

1
2∇N κ̃ + κ̃ + O(t). Similarly, (Hgt )

′
= H ′gt + H(gt)′. The first

term here, when paired with (δ∗ X)T and integrated, gives O(t), while the second term is nκ̃ to leading order. Thus
one has

2
∫

S(t)
〈(A − Hgt )

′, (δ∗ X)T 〉dVgt =

∫
S(t)

〈∇N κ̃ − (2n − 2)κ̃, κ〉gt dVgt + O(t). (5.47)

A straightforward calculation, essentially the same as that preceding (5.33) shows that∫
S(t)

〈∇N κ̃ − (2n − 2)κ̃, κ〉gt dVgt =

∫
S(t)

[
1
2

N (|κ̂|2)− (2n − 2)|κ̂|2
]

dVγ + O(t), (5.48)

where the norms on the right are with respect to ḡ. The first term on the right in (5.48) is O(t), and comparing (5.48)
with (5.44)–(5.47) shows that

κ̂ = 0

on ∂M . Hence via Corollary 4.4, κ = 0 on M , as before. This completes the second proof of Theorem 1.3. �

Proof of Corollary 1.4. Suppose (M, g) is a conformally compact Einstein metric with boundary metric given by the
round metric Sn(1) on Sn . Theorem 1.3 implies that the isometry group of (M, g) contains the isometry group of Sn .
This reduces the Einstein equations to a simple system of ODEs, and it is easily seen that the only solution is given
by the Poincaré metric on the ball Bn+1. �

Remark 5.6. By means of Obata’s theorem [30], Theorem 1.3 remains true for continuous groups of conformal
isometries at conformal infinity. Thus, the class of the round metric on Sn is the only conformal class which supports
a non-essential conformal Killing field, i.e. a field which is not Killing with respect to some conformally related metric.
Corollary 1.4 shows that any g ∈ E AH with boundary metric Sn(1) is necessarily the hyperbolic metric g−1 on the
ball. For g−1, it is well known that essential conformal Killing fields on Sn extend to Killing fields on (Hn+1, g−1).

We expect that a modification of the proof of Theorem 1.3 would give this result directly, without the use of Obata’s
theorem. In fact, such would probably give (yet) another proof of Obata’s result.

Corollary 5.5 shows, in the global situation, that the projection π of the constraint manifold T to Met(∂M) is
always locally surjective. Hence there exists a formal solution, and an exact solution in the analytic case, for any
nearby boundary metric, which is defined in a neighborhood of the boundary. However, the full boundary map Π in
(5.13) or (5.14) on global metrics is not locally surjective in general; nor is it always globally surjective.

The simplest example of this behavior is provided by the family of AdS Schwarzschild metrics. These are metrics
on R2

× Sn−1 of the form

gm = V −1dr2
+ V dθ2

+ r2gSn−1(1),

where V = V (r) = 1 + r2
−

2m
rn−2 . Here m > 0 and r ∈ [r+,∞], where r+ is the largest root of the equation

V (r+) = 0. The locus {r+ = 0} is a totally geodesic round Sn−1 of radius r+. Smoothness of the metric at {r+ = 0}

requires that the circular parameter θ runs over the interval [0, β], where

β =
4πr+

nr2
+ + (n − 2)

.

The metrics gm are isometrically distinct for distinct values of m, and form a curve in E AH with conformal infinity
given by the conformal class of the product metric on S1(β)× Sn−1(1). As m ranges over the interval (0,∞), β has
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a maximum value of

β ≤ βmax = 2π
√
(n − 2)/n.

As m → 0 or m → ∞, β → 0.
Hence, the metrics S1(L) × Sn−1(1) are not in Π (gm) for any L > βmax. In fact these boundary metrics are not

in Im(Π ) generally, for any manifold Mn+1. For Theorem 1.3 implies that any conformally compact Einstein metric
with boundary metric S1(L) × Sn−1(1) has an isometry group containing the isometry group of S1(L) × Sn−1(1).
This again reduces the Einstein equations to a system of ODEs and it is easy to see (although we do not give the
calculations here), that any such metric is an AdS Schwarzschild metric.

Remark 5.7. In the context of Propositions 5.1 and 5.4, it is natural to consider the issue of whether local Killing
fields of ∂M (i.e. Killing fields defined on the universal cover), extend to local Killing fields of any global conformally
compact Einstein metric. Note that Propositions 5.1 and 5.4 are both local results, the latter by using variations h(0)
which are of compact support. However, the linearized constraint condition (5.8) is not invariant under covering
spaces; even the splitting (5.7) is not invariant under coverings, since a Killing field on a covering space need not
descend to the base space.

We claim that local Killing fields do not extend even locally into the interior in general. As a specific example,
let N n+1 be any complete, geometrically finite hyperbolic manifold, with conformal infinity (∂N , γ ), and which has
at least one parabolic end, i.e. a finite volume cusp end, with cross sections given by flat tori T n . There exist many
such manifolds. The metric at conformal infinity is conformally flat, so there are many local Killing fields on ∂N . For
example, in many examples N itself is a compact hyperbolic manifold. Of course the local (conformal) isometries of
∂N extend here to local isometries of N .

However, as shown in [15], the cusp end may be capped off by Dehn filling with a solid torus, to give infinitely many
distinct conformally compact Einstein metrics with the same boundary metric (∂N , γ ). These Dehn-filled Einstein
metrics cannot inherit all the local conformal symmetries of the boundary.

Remark 5.8. We point out that Theorem 1.3 fails for complete Ricci-flat metrics which are ALE (asymptotically
locally Euclidean). The simplest counterexamples are the family of Eguchi–Hanson metrics, which have boundary
metric at infinity given by the round metric on S3/Z2. The symmetry group of these metrics is strictly smaller than
the isometry group Isom(S3/Z2) of the boundary. Similarly, the Gibbons–Hawking family of metrics with boundary
metric the round metric on S3/Zk have only an S1 isometry group, much smaller than the group Isom(S3/Zk).

This indicates that, despite a number of proposals, some important features of holographic renormalization in the
AdS context cannot carry over to the asymptotically flat case.
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Soc. Math., Paris, France, 1985, pp. 95–116.
[19] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, second ed., Springer-Verlag, New York, 1983.
[20] C.R. Graham, J.M. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. in Math. 87 (1991) 186–225.
[21] C.R. Graham, Volume and area renormalization for conformally compact Einstein metrics, Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000)

31–42. math.DG/0009042.
[22] S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge Univ. Press, 1973.
[23] J.L. Kazdan, Unique continuation in geometry, Comm. Pure Appl. Math. 41 (1988) 667–681.
[24] S. Kichenassamy, On a conjecture of Fefferman and Graham, Adv. in Math. 184 (2004) 268–288.
[25] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Wiley-Interscience, New York, 1963.
[26] J.M. Lee, Fredholm operators and Einstein metrics on conformally compact manifolds, Mem. Amer. Math. Soc. 183 (864) (2006)

math.DG/0105046.
[27] R. Mazzeo, Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds, Amer. J. Math. 13 (1991)

25–45.
[28] R. Mazzeo, F. Pacard, Maskit combinations of Poincaré–Einstein metrics, Adv. in Math. 204 (2006) 379–412.
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